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Abstract. Lift guides are subjected to variable loading conditions under loading, normal operation / 

running, and stopping (under the operation of the safety gear). Safety codes demand that under these 

conditions the guiding system must be designed with adequate strength to withstand bending and 

buckling and impose limits on the permissible stresses and deflections. Furthermore, maintaining 

special ride quality requirements of a lift system might impose additional limits on guide deflections. 

There have been extensive studies carried out to develop models that can provide adequately accurate 

results for stresses and deflections that must satisfy these conditions. For example, BS EN81-50 / 

20:2020 specifications for guide rail bending deflections are based on a three-span beam model. On 

the other hand, the model for evaluation of the maximum bending moments is a single span beam 

with one end simply supported and the other end constrained as built-in (fixed). The influence of 

various boundary conditions and the issue of selecting and providing accurate, practical models for 

pragmatic strength evaluation of a lift guiding system are discussed and appraised in the paper. 

1 INTRODUCTION 

The guiding system is the most important interface between the lift installation and the building 

structure. It is well established that the quality of an elevator installation is founded on the quality of 

the guiding system. Without an adequate design followed by careful and correct installation, it will, 

to all intents and purposes, be impossible thereafter to provide a lift system with an adequate or 

acceptable quality of ride [1]. 

Under various loading conditions, defined in EN81-20 [2] clause 5.7.2.2 as 

-  normal operation - running; 

- operation - loading and unloading; 

- safety device operation, 

the guides are subjected to bending / twisting and buckling forces (see Figure 1). The safety code 

imposes limits on the permissible stresses and deflections. It demands also that the forces must be 

evaluated in ‘worst case’ conditions. For each loading case the combination which is likely to give 

rise to the maximum guide rail stress should be considered. 

2 BENDING 

2.1 Multispan beam model in calculations of deflections 

A guide rail can be considered as a multispan beam subjected to lateral loading as shown in Figure 2. 

The elastic curve formed by the rail with N spans can then be described by the following equation:  
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where a step function ( )
n

if z z z= −  is introduced [3]. Fy represents a lateral force acting upon the 

rail at Fz z= , Ri is the reaction force at ith support positioned at z = zi, 0  represents the slope angle 

at z = 0, and E and Ix are the modulus of elasticity and the 2nd moment of the rail cross-sectional area 

about the x axis. 
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                    (a)                                               (b)                                                         (c) 
Figure 1 Forces acting on a guide rail: (a) bending, (b) bending and flange bending, (c) 

buckling [1] 

In BS EN81-50:2020 [4] clause 5.10.6 the following formula is given to calculate the deflections of 

guide rails in the y direction  
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where Ix is the second moment of area about the neutral x-x axis of bending, and str y −  is the deflection 

of the building structure in the y direction. The criterion y perm   must then be satisfied, where the 

permissible deflections perm  are specified in BS EN81-20:2020 clause 5.7.4.6. 

The first term at the right-hand side of (2) is the elastic deflection of the guide rail calculated under 

the assumption that the shaft walls are perfectly rigid and can be presented as  
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The value and origin of coefficient of 0.7 = in Equation 2 can be explained as follows. Consider a 

3-span guide rail with the lateral force Fy applied at 
2F

lz z= = . Equation 1 (with N = 3) can be 

applied to determine the bending deflections of the guide rail. The system is statically indeterminate 

and the most convenient method to calculate the reaction forces at supports is the classical 

superposition method. The static equilibrium conditions then yield the three reactions 

0 10.4 ,  0.725y yR F R F= =  and 2 0.15 yR F= −  that need to be used in Equation 1 to calculate the 

deflections. The boundary conditions of zero deflection at the support points yield the slope angle at 

z = 0 as
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 = − so that the maximum deflection which occurs at 
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lz z= =  can be determined 

as  
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By taking the absolute value of 
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 we can re-write Equation 4 as  
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Figure 2 Guide rail beam model in bending 

On the other hand, if the load Fy is applied further to the right from the origin O, the maximum deflections 

are smaller. For instance, in the scenario when the lateral force Fy applied at 3
2F

lz z= =  (at the mid-point of 

the 2nd span) the three reactions forces are 0 1 20.075 ,  0.575y yR F R R F= − = = , and the slope angle at z = 0 is

2

0
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y
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 = . Equation (1) then yields the following result:  

 
3 3

3 99
0.0115

2 180 48

y y

x x

F l F ll
y

EI EI

 
= −  − 

 
 (6) 

which yields  
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Thus, it is evident that the coefficient  of 0.7 that is used in BS EN81-50:2020 (see Equation 2) is based on a 

3-span beam model with the lateral load applied at the mid-point of the first span. 

As per BS EN81-50:20 2020 the guide rail deflections in the direction x (perpendicular to y) should be 

calculated as  

 
3

0.7
48

x
x str x

y

F l

EI
  −= +  (8) 

where Iy is the second moment of area about the y-y axis, and str x −  is the deflection of the building structure 

in the x direction. It should be noted that this is in general valid only when the distance between the centre 

points of the upper and lower guide shoes/ rollers is greater or equal to 1.5 l [5]. 



7-4 15th Symposium on Lift & Escalator Technologies 

 
 

 

2.2 Evaluation of the bending stresses 

Considering the bending stresses, the maximum bending moment with the lateral force Fy acting upon 

the rail is given as  

 max yM F l=  (9) 

where 0.2 =  when 
2F

lz = , and 0.175 =  when 3
2F

lz = . The distribution of normal bending 

stresses is then determined as  
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x
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where y denotes the distance from the neutral x-x axis.  

It should be noted that according to BS EN81-50:2020 clause 5.10.2.1 the maximum bending moment 

should be evaluated by  
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where 3 0.1875
16

 = =  is used which corresponds to the beam model presented in Figure 3. In this 

model the guide rail a single span beam with one end simply supported and the other end constrained 

as built-in (fixed) and the lateral load Fy is applied at the midspan (
2F

lz = ). The maximum bending 

moment (9) is evaluated at z l=  (at the right boundary). In this case the maximum deflection occurs 

at 0.447
5

l
z l=   and is given as  
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which is a smaller value than for the case of the 3-span simply supported beam model used in the 

calculations of permissible deflections. 

 
 

Figure 3 Equivalent beam model for evaluation of the guide bending stress  

2.3 Flange bending 

Considering flange bending the worst case will occur when the force is applied co-incident with a 

guide bracket, and that the maximum stress will occur in the web joining the blade of the guide to the 

foot (see Figure 4). 
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Figure 4 Flange bending [1, 4] 

As per BS EN81-50:2020 clause 5.10.5 the stress is to be determined by  
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where b represents half the width of the guide shoe lining, c denotes the thickness of the web joining 

the blade to the foot, f is the foot depth at the connection with the blade, h1 is the height of the guide 

rail, ls is the length of the guide shoe lining.  

2.4 Seismic and dynamic effects 

It should be noted that for lift installations subjected to seismic conditions it is necessary to add 

seismic forces as short-term loads to determine the guide system design parameters. The limits on the 

permissible stresses and deflections imposed by BS EN81-77:2022 clause 5.8.2 [6] should then be 

applied. A comprehensive overview of the dynamic interactions between the guide system and the 

car / counterweight / suspension system, with a discussion of protection measures, are presented in 

[7]. 

3 BUCKLING 

A slender structural element / rod in compression might be subjected to buckling (lateral deflections) 

if the axial loading becomes large enough to exceed its critical value. The critical load Pcr is the 

maximum axial load the member can support when it is on the verge of buckling. For any load which 

is larger than Pcr the structural member will become unstable with its center being displaced laterally 

by a large amount. In fact, the rod will then be bending as a beam subjected to axial loading. 

In a lift guiding system a section of the guide rail between each pair of brackets is subject to buckling 

due to the braking force Fb arising from safety gear operation (see Figure 5a). The critical load (often 

referred to as the Euler critical buckling force) depends on the end support conditions. For example, 

for a pinned – pinned conditions the critical load is given as 
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where EI represents the least flexural rigidity of the column and l denotes the unsupported length (see 

Figure 5b). The corresponding critical stress is then defined by  
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where E is the modulus of elasticity and   is the slenderness ratio given as l/r with r representing the 

minimum radius of gyration of the cross-sectional area. 
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(a)                                  (b) 

Figure 5 Guide rail buckling 

Considering the forces acting on the car as shown in Figure 5a second Newton’s law yields the 

expression to determine the braking force as follows:  
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where a is the deceleration, g denotes the acceleration of gravity, and P and Q denote the masses of 

the car and rated load, respectively. Following the code requirements [4] to determine the buckling 

stress in the guide rail the ‘omega’ method is used. In this method where the compressive stress due 

to safety gear operation is calculated and then modified by the factor , dependent upon the material 

of the guide and its slenderness ratio  as follows:  

 b
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where the coefficient   values are determined in terms of the guide material tensile strength and the 

slenderness ratio . The stresses calculated from equation (9) should not exceed the permissible value 

determined as m
perm

R

FS
 =  where Rm denotes the ultimate tensile stress (tensile grade) of the rail 

material and FS is the safety factor.  

However, in the case of buckling forces a further consideration must be given to forces due to the 

weight of any other equipment supported from the guide rails. Therefore, the code requirement is that 

the buckling stress on the guide is calculated as 
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where Fk is the buckling force due to safety gear operation (i.e. Fk = Fb), Maux is the weight of any 

additional equipment supported on the guide, and k3 is a coefficient reflecting the nature of equipment 

supported from the guide (e.g. the lift machine in a machine roomless configuration). 

4 CONCLUSIONS 

It is evident from the discussion presented above that the safety codes and engineering practice have 

established some straightforward criteria for a lift guiding system to be designed with adequate 

strength. However, the evaluation of the actual loading / main forces (such as Fx, Fy and Fk) require 

careful consideration.  

Their magnitude will depend upon the location of the centre of mass of the car and the location of the 

centre of mass of the load relative to the suspension point and to the guide rails. Annex C of BS EN 

81-50:2020 provides an example for calculation of guide rails, which includes some guidance as to 

how to evaluate non-uniform or off-centre locations for the carload.   

Furthermore, some thought must be given to the issue of support of the guide rail through the guide 

brackets, that provide the interface between the guiding system and the building structure. The key 

point is that the guide rail must be able to slip vertically through the guide clip, and yet be restrained 

from horizontal movement in any direction.  

The issue of ageing and building settlements and their influence on guide rail systems in long term 

use should be considered. For example, the building settlement and movement, either in the early 

stages of the building life, or later on as the building is loading and unloaded by its occupants, may 

lead to changes in the vertical spacing of the guide brackets. Such changes will lead to distortion of 

the guide rails, with consequent effects on the ride quality. 
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