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Abstract. Steel wire ropes employed as suspension means in lift systems are subjected to bending 

when passing around rigid traction sheaves/pulleys. In this paper, a suspension rope is represented 

as a moving Euler-Bernoulli beam and its global mechanical behaviour and interactions at the 

contact area are described by a nonlinear Boundary Value Problem with an unknown boundary. The 

problem is solved numerically for a lift system with the car suspension in a 2:1 roping 

configuration. The solution yields the curvature values, slope angles and the distribution of tensile 

and bending stresses along the rope span. It is demonstrated that the boundary angles vary during 

the lift travel and the distribution of stresses over the transition arc is nonuniform. 

1 INTRODUCTION 

Steel wire ropes (SWRs) and coated steel belts are used as suspension means in lift systems. The 

traction between the sheave and the suspension ropes is the fundamental consideration in the design 

of a traction lift installation [1]. Wire ropes have a finite life and are subject to the continual process 

of degradation associated with their operational conditions and stress fluctuations [2]. One of the 

primary mechanisms responsible for stress fluctuations is bending when the rope passes over the 

sheaves and pulleys. Consider the diagram shown in Fig. 1. The curvature of the suspension 

rope/belt increases along the rope from the point of application of tension T to the point of contact C 

where the curvature of the rope matches the curvature 1/R of the sheave/pulley surface. To meet the 

safety code requirements of BS EN81-20 the design must ensure that the ratio between the pitch 

diameter of sheaves and pulleys (or drums) and the nominal diameter of the suspension ropes shall 

be at least 40, regardless of the number of strands of the suspension ropes [3]. The suspension ropes 

must also meet BS EN 12385 – 5 [4] tensile strength grade requirements.  

 

Figure 1 Rope passing over a sheave/pulley 
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2 EULER-BERNOULLI BEAM FORMULATION AND GLOBAL ROPE STRESSES 

To determine the bending curvature, the rope can be considered as an elastic continuum and 

represented by a tensioned Euler-Bernoulli beam model [5]. The relationship between the bending moment 

M at the cross-section defined by the arc length s and the curvature   is given by Eq. 1.  

M

EI
 =                                                                                                                                           (1) 

where EI  is the bending stiffness of the rope. The curvature is equal to the reciprocal of the radius of 

curvature   and can be expressed as the rate of change of the slope angle   along the rope arc as 

1 d

ds





= =                                                                                                                                    (2) 

Considering Eq. 1 and Eq. 2 the slope angle   can be determined by solving the Boundary Value Problem 

(BVP) represented by the differential equation and boundary conditions defined by Eq. 3. 
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where 2 T

EI
 =  and ( )  denotes differentiation with respect to s, 0 s L  , with L  representing the 

overall arc length of the rope. For small slope angles, the approximation sin   can be applied. Eq. 3 is 

then solved exactly to give the slope angle and the curvature as  
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where C1 and C2 are constants to be determined from the boundary conditions at 0,  s s L= = , respectively. 

It should be noted that the solution of Eq. 4 assumes that bending stiffness EI of the rope is constant. Once 

the Boundary Value Problem (3) is solved, the global bending stress in a wire of diameter dw in the rope can 

be calculated by the following equation  

2

w
b

d
E =                                                                                                                                    (5) 

where E represents the modulus of elasticity of the wire. It should be noted that this calculation provides an 

estimated global stress value (as first proposed by Reuleaux [6]) and assumes that the wire in the rope does 

not have a helix form. For a constant strand lay angle the real bending stresses in wires can be assumed to be 

the same as those given by Eq. 5 [6]. 

On the other hand, the global tensile stress in the wire rope can be calculated as 

t

T

A
 =                                                                                                                                            (6) 
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where A is the global metallic cross-section area, determined as the sum of the cross-sections of all wires in 

the rope. While the real wire tensile stresses are larger than the global stress [6], Eq. 6 presents a useful 

practical estimation of the rope tensile stress conditions. 

3 MOVING ROPE MODEL 

For a rope–sheave/pulley system in motion the BVP (3) needs to be developed further. Fig. 2 shows a free 

body diagram of the rope segment of length ds. The equilibrium of forces in the normal direction and the 

tangential direction, respectively, yields the following equations of motion [5] 

( )21
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mg
T mv

EI EI

T mvv EI mg

  

 

 − − + =

  − + + =

                                                                                               (7) 

where g is the acceleration of gravity, v is the axial speed and m is the mass per unit length of the rope. 

 
Figure 2 Free body diagram of the rope segment 

By considering that the Cartesian coordinates of rope sections are expressed as 
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(8) 

The model given in terms of Eq. 7 and Eq. 8 can be formulated as a 1st order system defined by 

( ) ( ), ; ,   0s t s L t =  y f y                                                                                                            (9) 

where t denotes time and 
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It should be noted that vector y represents unknown quantities and includes the arc length ( )L t  

which is an unknown boundary.  

4 THE SOLUTION STRATEGY AND A LIFT SYSTEM EXAMPLE 

To solve the equation system (9) the boundary conditions need to be defined. For example, consider 

a lift system with the suspension ropes at the car side in a 2:1 roping configuration (see Fig. 3). By 

taking into account the suspension rope span between points A and B, the boundary conditions are 

defined in Eq. 11. 
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where nSR is the number of ropes. The solution strategy for the BVP (9-11) with the unknown time-

varying boundary ( )L t  involves reformulation into the ‘standard’ form defined over a fixed 

interval [7]. This is accomplished by introducing nondimensional variables defined by Eq. 12. 

2
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s x L T v
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 = = = = = =                                                                  (12) 

where 0

SR

Mg
c

n m
= . The system (9-11) can then be expressed in terms of variables (12) (see 

Appendix) and solved numerically by the application of a collocation method for BVPs. The 

solution procedure involves providing the initial solution guess. For the guess, the estimations given 

by Eq. (4) are used and the problem is solved in MATLAB with the bvp4c function [8].  

Table 1 Fundamental parameters 

Parameter Value Unit 

M 1800 kg 

nSR 4  

m 0.407 kg/m 

A 42.5 mm2 

dw 1 mm 

EI 1.6 Nm2 

V 1.5 m/s 

L(0) 2 m 

R 0.28 m 

r 0.25 m 
 

 



On the Mechanical Interactions in Suspension Rope – Sheave / Pulley Systems  11-5 
 

 

 

Figure 3 Lift system 

5 NUMERICAL RESULTS 

The system parameters used in the numerical simulations are presented in Table 1. The suspension 

rope is an 11 mm 8×19 S - FC rope [9], and the EI value is determined by laboratory vibration tests. 

The simulation is carried out for the lift moving down at constant speed over the time interval 0 – 5 

s. Fig. 4 shows the variation of slope angles during the lift travel, determined at the contact points at 

0s =  and at s L= , respectively. The variation is small, and the plots demonstrate slightly larger 

values at the car pulley. The curvature changes and global bending stresses (calculated from Eq. 5) 

over the rope span length are illustrated in Fig. 5(a) and Fig. 5(b), respectively. Fig. 6 shows the 

variation of global tensile stresses (determined from Eq. 6). 

 

Figure 4 The slope angle at the boundary points: 0s = and s L=  
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Figure 5 (a) curvatures and (b) bending stresses 
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Figure 6 Tensile stresses  

6 SUMMARY AND CONCLUSIONS 

The work presented in this paper demonstrates a simplified model to analyse the global behaviour 

of lift SWR suspension ropes passing over a traction sheave/pulley system. The model is used to 

calculate fundamental parameters describing the performance of the ropes subjected to bending and 

tensile stresses. The method is based on the application of a tensioned Euler-Bernoulli beam which 

results in a nonlinear BVP problem. The problem can be treated by standard ODE solvers. The 

results show estimated bending and tensile stresses that vary along the rope length. The bending 

stresses can be reduced by using smaller diameter ratios between the pitch diameter of 

sheaves/pulleys and the nominal diameter of the suspension ropes. The lifetime/endurance of SWRs 

running over sheaves/pulleys can then be estimated in terms of the number of bending cycles until 

breakage [10]. 
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APPENDIX 

Substituting the nondimensional parameters Eq. 12 into Eq. 7 yields [5]  
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where 
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 =  and ( )  denotes now differentiation with respect to the nondimensional variable s  

defined over the fixed interval 0 1s  . Eq. 10 assumes then the following form:  
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