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Abstract. Safe and reliable lift services are essential for maintaining high accessibility and functional 

vertical transportation to help preserve the vitality of cities like Hong Kong which are renowned for 

its densely packed skyscrapers. This paper presents a proof-of-concept trial of a health monitoring 

platform for condition-based and predictive maintenance of lift installations using big data analytics. 

Implemented with various non-intrusive sensors, time series data of temperature, strain, acceleration, 

and displacement of lifts are collected and used to build predictive models with statistical and 

machine-learning techniques. The novel approach is capable of fault detection of brake malfunctions, 

lift car shaking, door malfunctions, and traction motor malfunctions and potentially enables 

prediction of the remaining useful life for the critical components. 

1 INTRODUCTION 

Lift installations play a crucial role in our daily lives, providing quick access to floors in buildings. 

However, lift systems are complex and require regular maintenance to upkeep their safe and reliable 

operation. Traditional maintenance approaches, such as time-based maintenance, can be inefficient 

and costly, leading to unnecessary downtime and repairs. 

Condition-based and predictive maintenance strategies have emerged as promising alternatives to 

traditional approaches [1,2], leveraging big data analytics to monitor lifts and identify potential issues 

before they cause significant problems. These strategies rely on continuous monitoring of the lift 

installations. In recent years, they have been developed and implemented with various approaches. 

One approach is to monitor the traction sheave rope using computer vision [3]. Another approach is 

an automatic fault detection system using neural networks to monitor lift doors [4]. Besides, Li [5] 

proposed a vibration signal analysis to monitor the traction motor based on principal component 

analysis and Fourier methods. The exploration done in the field has enabled condition-based 

maintenance on specific critical components of lifts and advanced modern maintenance strategies. 

In this paper, a condition-based and predictive maintenance strategy is implemented with non-

intrusive sensors. Together with mathematical analysis and machine learning approaches, the detail 

of the methodology is established in Section 2. In Section 3, the results from four lifts at various 

locations in Hong Kong, namely Sir Ellis Kadoorie Secondary School Lift no.1, North Point 

Government Primary School Lift no.1, and Tai Po Government Office Lift no.1 and no.2 are 

discussed to evaluate the performance of this strategy. Finally, in Section 4, the findings are 

summarised, and the potential use in the future is discussed. 

2 METHODOLOGY 

To minimize any alteration of proprietary lift designs or interruption to the operation of different 

brands and models of lifts, non-intrusive electronic sensors were applied to monitor various physical 

parameters of interest. These sensors recorded the vibration of the traction motor, operation of the 

brake mechanism, and lift doors of the lift system. The sensor data is transferred to a cloud platform 

via a 4G LTE network periodically and analyzed to identify trends, anomalies, and potential failures. 
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In the following sessions, the lifts mentioned in Section 1 are mapped into Elevators 1, 2, 3, and 4 to 

enhance readability. Table 1 shows the name mapping of the lifts. 

Table 1 Name mapping of lifts in the paper 

Elevator 1 Tai Po Government Office Lift no.1 

Elevator 2 Tai Po Government Office Lift no.2 

Elevator 3 North Point Government Primary School Lift no.1 

Elevator 4 Sir Ellis Kadoorie Secondary School Lift no.1 

 

2.1 Traction Motor and Gear Box 

Electrical accelerometers with a sampling rate of 1600 Hz installed on the outer edge of the lift car 

recorded its vibration signals. According to the industrial standards for lift safety in Hong Kong, the 

acceptable maximum peak-to-peak (P2P) lateral and vertical vibration is 0.25 m/s² for a lift speed of 

less than 6 m/s [6]. The measure is deployed as a shaking criterion, tagging any lift operation with 

P2P vibration above this level as a lift car shaking (LCS) incident. As the resonance frequencies of 

human body organs range from 2-50 Hz [7], a linear digital filter is applied to the vibration signals 

twice, once forward and once backwards, to preprocess the signals to [1, 50] Hz. 

The same electrical accelerometers are installed on the traction motor to record its vibration signals. 

Assuming that the targeted components in the collected time series are sinusoidal, the Lomb method 

is suggested for the spectral analysis [8]. The Lomb-Scargle periodogram was first developed by 

Lomb [9] and formulated with a least-squares model fitting sinusoidal to data samples. It was 

proposed to analyze unequally spaced data of ground-based astronomical observation and further 

extended by Scargle [10] to search for periodic signals with low signal-to-noise ratios in unevenly 

sampled time series. 

Given a set of 𝑛 observations 𝑦𝑖 , 𝑖 = 1,2, . . . , 𝑛 with zero mean and obtained at times 𝑡𝑖 , the time 

series is described by 

𝑦𝑖 + 𝜀𝑖 = 𝑎𝑐𝑜𝑠(2𝜋𝑓𝑡𝑖) + 𝑏𝑠𝑖𝑛(2𝜋𝑓𝑡𝑖),        (1) 

where 𝜀𝑖 is the independent random measurement error at different times 𝑡𝑖 and 𝑓 is the frequency. 

To identify the dominant frequencies of a time series, the periodogram is used to estimate the spectral 

density of a signal. The classical periodogram definition 𝑃(𝑓) [11] is given by 

𝑃(𝑓) =
1

𝑁
[(∑ 𝑔𝑛 𝑐𝑜𝑠(2𝜋𝑓𝑡𝑛)𝑛 )2 + (∑ 𝑔𝑛 𝑠𝑖𝑛(2𝜋𝑓𝑡𝑛)𝑛 )2].      (2) 

After modifications on the denominators and adding a parameter 𝜏 to ensure time-shift invariance, 

the Lomb-Scargle periodogram 𝑃𝐿𝑆 in terms of frequency-domain representation [9, 10] is given by 

𝑃𝐿𝑆(𝑓) =
1

2
[

(∑ 𝑔𝑛 𝑐𝑜𝑠(2𝜋𝑓[𝑡𝑛−𝜏])𝑛 )2

∑ 𝑐𝑜𝑠2(2𝜋𝑓[𝑡𝑛−𝜏])𝑛
+

(∑ 𝑔𝑛 𝑠𝑖𝑛(2𝜋𝑓[𝑡𝑛−𝜏])𝑛 )2

∑ 𝑠𝑖𝑛2(2𝜋𝑓[𝑡𝑛−𝜏])𝑛
],      (3) 

where 𝜏 is given by 

𝜏 =
1

4𝜋𝑓
𝑡𝑎𝑛−1 (

∑ 𝑠𝑖𝑛(4𝜋𝑓𝑡𝑛)𝑛

∑ 𝑐𝑜𝑠(4𝜋𝑓𝑡𝑛)𝑛
).         (4) 

In this study, the Lomb-Scargle periodogram is used as an instantaneous frequency estimator to 

generate spectrograms and visualize the frequency components of motor vibration signals. 
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2.2 Brake System 

Electrical strain sensors installed on the braking arms collected 50 Hz time series data on the braking 

arm movement and contact when the brake is engaged. The time series is processed into braking 

cycles, where each cycle is the period from which the brake disengaged, then engaged. Given the 

information from the current transformer logger installed on the controller board, unexpected brake-

arm movements are searched for in the entire dataset. 

2.3 Door System 

Proximity sensors installed in the car doors of the lifts recorded the distance between the car doors at 

a sampling rate of 9.1 Hz. The collected time series is processed into door cycles, where each cycle 

is the period from which a door starts to open from a fully closed state to a fully opened state, and 

then returns to its fully closed state. The period can include regular partial door re-openings. 

According to the maintenance records, door malfunction (DM) incidents are identified in the 

processed door cycles. During a DM incident, the door attempted to operate but became either “stuck” 

for a prolonged period or moved roughly. DM can occur anywhere within a door cycle and be 

classified into door not closing (DNC) and door not opening (DNO) types. Based on a case study on 

a DNC incident in Elevator 3, shown in Fig. 1, two methods are developed to search for DM in the 

closing and opening stages. 

 

Figure 1 Lift door distance indicating a “door not closing” incident in Elevator 3, with zoom-

in plot showing a door reopening waveform which is used in XGBoost training 

Method 1: Threshold  

In this method, door gap data is first normalized to [-1, 1] and abnormalities are detected using 

threshold(s). A door cycle is marked as suspected DM if the door gap stays within a prescribed high 

and low range for at least 4 seconds. The suspected DM is classified as DNC if found in the high gap 

and DNO if low. In Fig. 2, the DNC and DNO search areas are shaded in green and purple and 

correspond to the 0.75 to 0.9 and -0.75 to -0.9 levels. In the figure, a DNC spanned approximately 12 

seconds was detected, highlighted in red. The method catches door movements indicating the door is 

“stuck” outside the fully opened and closed levels. 



3-4          14th Symposium on Lift & Escalator Technologies 

 

 

 

Figure 2 Door cycle with DNC failure (red region) found by threshold method 

Method 2: XGBoost (eXtreme Gradient Boosting) 

In this method, door gap data are sampled using a sliding window of 100 data points each, and a 

machine learning algorithm XGBoost [12] is trained to classify abnormal versus normal samples. The 

abnormal samples are taken from the “reopening” waveform in the DNC case illustrated in Fig.1, 

whereas the normal samples are taken from normal operating periods. An XGBoost classifier is 

trained and then applied to search for other unreported abnormalizes in the entire dataset. 

2.4 Lift Levelling 

Image sensors mounted on the lift car roof collected data on levelling deviation at each floor arrival 

by capturing the level code plate attached to each floor wall inside the lift shaft and computing the 

floor levelling. The daily spread of the levelling deviation of lift cars was studied by the standard 

deviation and interquartile range. 

Given a set of 𝑛 observations of levelling deviation 𝑦𝑖, 𝑖 = 1,2, . . . , 𝑛, obtained at each floor arrival 

in one day, the standard deviation 𝜎 is given by 

𝜎 = √
∑ (𝑦𝑖−𝜇)2𝑛

𝑖=0

𝑛
 ,          (5) 

where 𝜇 is the mean levelling deviation. The interquartile range 𝐼𝑄𝑅 is given by 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1,           (6) 

where 𝑄1 and 𝑄3 are the lower and upper quartiles of levelling deviation data in one day. To prevent 

the daily interquartile range and standard deviation from being highly biased to a few travels, the 

number of operations per day is computed and used for filtering out highly biased data. The 

interquartile range and standard deviation are only calculated for days where the daily travel count 

exceeds half of the mean daily travel count for the entire year. Furthermore, the data is organized into 

clusters based on the destination floor of the operation cycles. 

3 RESULTS 

3.1 Traction Motor and Gear Box 

Vibration signals of the lift car body in the horizontal (Ax) and vertical (Az) directions in an 

operational cycle, or travel, were retrieved from the vibration sensor and shown in Fig. 3. In Fig. 4, 

the results for daily lift car shaking (LCS) count for the study period in Elevator 1 and Elevator 2 are 

visualized. On a typical weekday, LCS occurred in Elevator 1 throughout the year in large numbers 

(up to 800 instances), while LCS rarely occurred in Elevator 2 (up to 4 instances). 
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Figure 3 Time-domain signal of lift car vibration in an operational cycle 

 

Figure 4 Number of lift car shaking found by our method (in green and blue) versus the 

actual lift car shaking events reported (the red lines) across the two lifts 

By analyzing the peak-to-peak (P2P) vibration amplitude exceeding a predefined threshold, our 

method suggests that Elevator 1 has a lot more potential LCS events compared to Elevator 2. This 

finding is consistent with the logbook records which logged two LCS incidents reported in Elevator 

1, whereas Elevator 2 has none. So, we believe that P2P vibration amplitude is potentially a good 

metric for detecting lift car shaking events. However, due to the limited number of incidents, this 

hypothesis deserves further validation with more data in future studies. 

In addition to lift car vibration, vibration signals of the traction motor in the Ax and Az directions in 

an operational cycle were retrieved from the vibration sensor and shown in Fig. 5. In Fig. 6, the typical 

signals of Elevator 1 and Elevator 4 are transformed into spectrograms computed with the Lomb 

method in Sec. 2.1. In Fig. 6(a) and 6(b), the time-frequency pattern is distinct throughout the lift 

journey for Elevator 4. The frequency, or motor rotation speed, gradually increased from the 
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beginning of an operation cycle to a certain state and remained constant until near the end. It is 

consistent with Li’s work [6]. However, the expected time-frequency pattern is insignificant in 

Elevator 1’s signals in Fig. 6(c) and 6(d). The dispersed operational frequency pattern potentially 

relates to the deteriorating performance of the traction motor and gear box and causes the large LCS 

counts in Elevator 1 in Fig. 4.  

Figure 5 Time-domain signal of traction motor vibration in an operational cycle 

 
(a) up-drive condition, Elevator 4  (b) down-drive condition, Elevator 4 
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(c) up-drive condition, Elevator 1  (d) down-drive condition, Elevator 1 

Figure 6 Spectrogram of traction motor vibration in different operating directions in lifts 

3.2 Brake System 

The strain sensor recorded the operation pattern of the brake system, in which the expected behaviour 

was to disengage once only when the lift car moved from one floor to another. However, in this study, 

unexpected behaviour of the brake system was discovered: multiple brake-arm engagements (MBE). 

In MBE incidents, the brake arm disengages and engages multiple times during and right after travel. 

In the study, the MBE incidents were classified into two groups: MBE-1 and MBE-2. In MBE-1, the 

extra brake cycle occurred just after the lift car travelled, while MBE-2 is within the lift car travelling 

period. There is no information regarding MBE incidents in the maintenance record. 

MBE After Lift Travel (MBE-1) - In a typical MBE-1 travel visualized in Fig. 7(a), the additional 

brake cycle occurred as the lift car door opened. When the motor received the current supply, the 

brake arm disengaged, and the lift car moved to its destination floor. Once the lift car reached the 

designated floor, the brake arm engaged again, and the door opened. However, the brake arm operated 

again for about 1 to 2 seconds. Another typical type of MBE-1 travels, wherein the brake arm 

disengaged and engaged three times, has also been uncovered, comprising around 25% of all 20,000 

MBE-1 in Elevator 1. A sample of this is illustrated in Fig. 7(b). MBE-1 is a potential risk for 

passengers and was not reported nor repaired. Furthermore, in Fig. 8, MBE-1 occurred in Elevator 1, 

Elevator 2, and Elevator 4 throughout the study period. 
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(a) MBE-1 (1 extra)     (b) MBE-1 (2 extra) 

Figure 7 Brake motor, brake arm, and car door operations during MBE-1 with extra 

brake operations (refer to the middle plot) 

MBE During Lift Travel (MBE-2) - In Fig. 9, an MBE-2 travel is visualized. Brake engagements 

occurred during a lift operation. As seen in the middle subplot, the brake arm attempted to engage 

multiple times, which in turn caused large signal spikes highlighted by red points in motor vibration 

in Fig 9. Among the sites, 16 MBE-2 incidents were found in Elevator 2. The MBE-2 distribution 

throughout the study period is shown in Table 2.   
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Figure 8 Daily count of MBE-1 in Elevators 1, 2, and 4 

 

Figure 9 Motor current, brake strain, and motor vibration during MBE-2 incident. The 

red dots highlight the motor vibration spikes due to brake-arm engagement 
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Table 2 Distribution of Elevator 2 MBE-2 incidents in the study period 

Month Dec 2020 Jan 2021 Apr 2021 

MBE-2 Count 2 1 13 

3.3 Door System 

In addition to the case study incident in Fig. 1, the methods captured other anomalous door 

movements. However, the DM discovered generally occurred within maintenance periods or post-

incident repair works. A summary of DM incidents is given in Table 3. Plots of the three unrecorded 

failures found outside of maintenance and repair are included in Fig. 10 and Fig. 11 for the respective 

method. In Fig 10, the DM incident in the upper plot showed a door cycle where the door gap distance 

did not reach the fully opened door gap threshold, while the lower showed the door was moving 

roughly. In Fig. 11, the door gap distance largely fluctuated around the fully opened threshold. 

 

Figure 10 Unrecorded DM captured by the manual threshold method 

 

Figure 11 Unrecorded DM captured by XGBoost 
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Table 3 Number of Days with DM by Threshold (Thr.) and XGBoost (XGB) 

 

Elevator 3 Elevator 4 Elevator 1 Elevator 2 

Thr. XGB Thr. XGB Thr. XGB Thr. XGB 

Maintenance Period 1 1 2 0 6 1 5 0 

Incident/Repair Period 2 1 0 0 1 0 1 0 

Unrecorded Failure 1 0 0 2 0 0 0 0 

Although the threshold method captured more failures than XGBoost due to its generic nature, it only 

checks the door gap when the door is moving, while the XGBoost method detects abnormalities at 

any point in the door cycle. The threshold method is confined to searching only a portion of the 

opening or closing phase, but this can be rectified by widening or adding more search ranges. In 

contrast, due to the high specificity of the XGBoost method, it captures only the waveform or very 

similar patterns. Besides, some false alarms are detected, which include partial door re-openings and 

strong fluctuations in readings while the door is at rest, but the amount is negligibly small.  

3.4 Lift Levelling 

In Fig. 12(a), the interquartile range and standard deviation of the levelling deviation of Elevator 1, 

3/F were visualized. The accuracy and precision increased significantly after the regular maintenance 

on 29 May 2021. The daily upper quantile was about 0.4 cm and dropped to less than 0.15 cm. 

Furthermore, the highly fluctuated standard deviation became stable at about 0.02. It indicates an 

enhanced performance of levelling due to scheduled maintenance. In contrast, in Fig. 12(b), the 

interquartile range and standard deviation of Elevator 2, 1/F increased over time, which implies a 

deteriorating condition of the traction motor or the door clutch on 1/F. 

 

(a) Elevator 1, 3/F        (b) Elevator 2, 1/F 

Figure 12 Interquartile range and standard deviation of levelling deviation per day. 

4 CONCLUSION 

This paper presents a proof-of-concept trial of a health monitoring platform for condition-based and 

predictive maintenance of lift installations using big data analytics. By using non-intrusive sensors, 

the critical components of the lift system are monitored and analyzed in various ways. The trial has 

been running for an entire year across four lifts and the data of all the sensors were collected and 

analyzed in order to construct various detection methods. 
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By using statistical methods and machine learning approaches, we developed methods that are 

capable of fault detection, brake malfunction, lift car shaking, door malfunction, and traction motor 

malfunction. And these methods can correctly identify the incidents reported by passengers during 

the study period. Additionally, these methods uncovered potentially unreported lift failures such as 

multiple brake arm engagements while the lift was moving, as well as unrecorded door malfunction 

incidents in two of the lifts. 

Therefore, we believe that this health monitoring platform and the detection methods are useful tools 

for formulating condition-based and predictive maintenance strategy, could potentially be used to 

predict the remaining useful life for the critical components, and turns corrective maintenance into 

proactive maintenance. 
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