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Abstract. The majority of faults in lift installations occur in the door (entrance) systems. Wear and 

tear of the door operator mechanism and the door system components/ subsystems will result in 

defects that lead to damage which in turn leads to faults, understood as a change in the door system 

that produces an unacceptable reduction in the quality of its performance. The research presented in 

this paper involved the development of an experimental lift door stand to collect vibration signature 

datasets corresponding to a range of typical damage classes that occur in lift door systems. The 

installation comprises single speed doors (single panel side opening and two panel centre opening) 

as well as two speed doors (two panel side opening and four panel centre opening). Once the data 

are collected the vibration features are extracted and used in supervised learning to train the 

artificial neural networks designed to recognize patterns and to classify damage. The results 

obtained demonstrate excellent performance of the network with very high percentage of correctly 

classified damage classes involved. The work completed so far forms the basis for the development 

of decision stage algorithms to analyze the results from the pattern recognition and to decide about 

appropriate maintenance actions required. 

1 INTRODUCTION 

Fault data collected from lift installation sites show that the majority of faults occur in door 

(entrance) systems [1]. The lift entrance system comprises landing (hoistway) doors and car doors. 

Most elevators intended for passengers have fully automated power-operated doors. The standard 

arrangement for automatic power operation involves a ‘master’ operator, a self-contained electric 

motor driven unit mounted on the car top. The unit is coupled mechanically with the car door 

through a linkage system, a toothed belt or similar device to achieve the speed profile for opening 

and closing of the doors. The door motion is electronically controlled. A block diagram of an 

electronically controlled door operator is shown Fig. 1 [2]. In this arrangement the microprocessor 

unit senses the position of the doors (usually via a simple optical encoder mounted on the motor, as 

shown), and controls the speed of the motor in accordance with the position of the doors, as 

required by an inbuilt speed/position profile held in the microprocessor memory. The doors can 

operate at different speeds under different circumstances. 

Wear and tear of the door operator mechanism and the door system components/ subsystems will 

result in damage and the system is no longer operating in its ideal condition (but can still function 

satisfactorily). This in turn will lead to a fault, when the system can no longer operate satisfactorily 

(a change that produces an unacceptable reduction in quality) [3].  

There should be a relevant maintenance strategy in place for planning and implementing repairs or 

replacements of damaged/ faulty components/ subsystems in lift systems [4]. The preferred strategy 

is predictive maintenance where the condition is monitored (while the system is operating) and any 

damage is detected and identified very early before the fault is developed. The condition monitoring 

then predicts when maintenance should be performed. 
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Figure 1 Automated power-operated door: an electronically controlled door operator 

Bearing this in mind, the following hierarchical structure and the method levels in damage 

identification should be followed [3]: 

1. Detection: the method gives a qualitative indication that damage might be present in the 

system. 

2. Localisation: the method gives information about the probable position of the damage. 

3. Classification: the method gives information about the type of damage.  

4. Assessment: the method gives an estimate of the extent of the damage. 

5. Prediction: the method offers information about the safety of the system, and possibly 

estimates a residual life. 

In this paper the application of machine learning (ML) techniques and Artificial Neural Networks 

(ANN) algorithm based on vibration signal data for damage detection and classification in lift door 

systems is investigated. An experimental test rig to generate a comprehensive set of vibration test 

data corresponding to a range of typical damage classes that occur in lift door systems has been 

developed. Once the data are collected, suitable vibration features are extracted and used in 

supervised learning to train the ANN designed to recognize patterns and to classify damage. 

2 EXPERIMENTAL SETUP AND VIBRATION DATA  

The experimental lift door stand to carry out tests and collect vibration data has been developed. 

The stand has been designed to accommodate various types of lift doors: single speed doors (single 

panel side opening and two panel centre opening) as well as two speed doors (two panel side 

opening and four panel centre opening). Fig. 2(a) shows two speed two panel side opening doors 

fitted in the stand frame. The door motion and vibrations have been monitored by using B&K 

accelerometer sensors (see Fig. 2(b)) attached to the door structure at various locations. The 

analogue signals from the accelerometers are recorded by using the B&K LAN-XI recorder 

platform. Three LAN-XI modules (see Fig. 2(c)) with four input channels each are applied.  

The door speed / acceleration and jerk are monitored during/ jerk profiles are determined by 

integrating / differentiating the acceleration signals obtained from sensors mounted on the car and 

hoistway door sets, respectively (see Fig. 3). The time records of vibration responses are 

postprocessed and then used in supervised learning to train the ANN, designed to recognize patterns 

and to classify damage. The raw time data sets are pre-processed and normalized (see Figure 4(a)). 

These are post-processed to develop spectrograms (see Fig. 4(b)). The cepstrogram (see Fig. 4 (c)) 
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is then calculated to extract its real coefficients as features to be used in the neural network pattern 

recognition (NNPR) algorithm. 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

Figure 2 Experimental setup  

 

Figure 3 Door motion jerk / acceleration and speed time profiles  

 

(a) 

(b) 

(c) 
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Figure 4 Single panel side opening door vibration data: (a) normalized acceleration signal, (b) 

spectrogram, (c) cepstrogram 

3 DAMAGE PATTERN RECOGNITION BY USING ARTIFICIAL NEURAL 

NETWORK ALGORITHM   

Eight main categories of ‘damage’ are considered (and are referred to as ‘damage classes’). These 

are as listed in Table 1. 

Supervised machine learning is applied to develop a NNPR algorithm to classify the damage. In the 

algorithm an input data set (based on the cepstrogram features) is classified into a set of target 

categories (the target dataset comprises vectors with a sequence of 0, 1 elements, see Table 1). The 

algorithm needs to have prior knowledge and it is necessary to construct examples of data 

corresponding to each damage class. Thus, a training set of data/measurements vectors associated 

uniquely with each class is necessary. Consider an example in which a shallow neural network is 

used. The network is developed by using the MATLAB ‘nprtool’ app [5]. The network is a two-

layer feed-forward network (see Fig. 5(a)). 

Fig. 5(b) shows the confusion matrix from testing after the training. This matrix demonstrates the 

following: 

• the rows correspond to the predicted (output) class, 

• the columns correspond to the true (target) class, 

• the diagonal cells correspond to samples that are correctly classified, 

• the off-diagonal cells correspond to incorrectly classified samples, 

• the column on the far right shows the percentages of all the examples predicted to belong to 

each class that are correctly classified (positive predictive values) and incorrectly classified 

(false discovery rates), 

• the cell in the bottom right of the plot shows the overall accuracy. 

The test confusion matrix indicates the classification performance. The overall accuracy is 97.9% 

which demonstrates excellent performance of the NNPR algorithm. 
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Table 1 Damage Classes 

Class No. Description / target vector Deatails 

1 No damage 

[1 0 0 0 0 0 0 0]T 

 

Baseline state of the door installation 

 

2 Car door roller with damage 

[0 1 0 0 0 0 0 0]T 

 

3 Hoistway door roller with damage 

[0 0 1 0 0 0 0 0]T 

 

4 Door panel sill guide contaminated 

[0 0 0 1 0 0 0 0]T 

 

5 Damaged interlock rollers 

[0 0 0 0 1 0 0 0]T 

 

6 Low tensioned (loose) door drive belt 

[0 0 0 0 0 1 0 0]T 

 

7 Damaged belt tooth  

[0 0 0 0 0 0 1 0]T 

 

8 Interlock misalignment 

[0 0 0 0 0 0 0 1]T 
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4 CONCLUSIONS 

The results obtained demonstrate excellent performance of the network with a very high percentage 

of correctly classified damage classes investigated. The work completed so far forms the basis for 

further work. This will involve the development of decision stage algorithms to analyze the results 

from the pattern recognition and to decide about the appropriate maintenance actions required.  

 

 

 

(a) 

 

(b) 

 
Figure 5 (a) neural network, (b) test confusion matrix 
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