
Global Dispatcher Interface - Initial Prototype Design

Jonathan Beebe

Jonathan Beebe Ltd., 2 Heap Bridge, Bury, BL9 7HR UK

Keywords: Global dispatcher, Standard Elevator Information Schema, group control, prototype,
REST, API, UML.

Abstract. This paper presents an overview of the design and development of a prototype Global

Dispatcher Interface (GDI) for the control of a group of lifts. The role of the dispatcher is to assign

passenger calls to the optimal lift in a group, as decided by a dispatcher algorithm. The GDI is

independent of the underlying algorithm, which may be distributed remotely, and provides a

standard means through which all interactions with the dispatcher may occur. To warrant the

“Global” appellation the GDI must support any of the currently available, as well as anticipated,

call station modes, types and configurations of cars, topology of control equipment and buildings.

The analysis and design process follows a recognised Systems Development Life-Cycle, centred on

Use Cases in a UML model. Significant diagrams from the model are presented and discussed to

illustrate the evolution of the prototype design. The requirements, resulting from analysis of the Use

Cases, identify that the GDI design must be compatible with a publish-and-subscribe architecture

and a RESTful interface is selected for this purpose. Where possible, the prototype design uses open

standards with an emphasis on demonstrating those aspects that are specific to lift system dispatcher

operation, while attempting to demonstrate independence from implementation details such as

programming language, network protocols, etc. The Standard Elevator Information Schema is

particularly relevant and fulfils these objectives. The working prototype, which operates in

conjunction with simulated lifts and passengers, is presented as a validation of the design.

ABBREVIATIONS USED

API (Application Programming Interface) - a type of software interface, offering a service to other

pieces of software.

CoAP (Constrained Application Protocol) - see [22]

GDI (Global Dispatcher Interface) - an interface that separates the lifts and other equipment of a

group from the dispatcher in order to present the dispatcher in standard way - the subject of this

paper.

JSON (JavaScript Object Notation) - an open standard file format and data interchange format that

uses human-readable text. (see - [23])

REST (REpresentaional State Transfer) - A software architectural style (see [17])

SDLC (Systems Development Life-Cycle) - see [4]

SEIS (Standard Elevator Information Schema) - see [13]

UML (Unified Modelling Language) - a general-purpose modeling language in the field of software

engineering that is intended to provide a standard way to visualize the design of a system. (see [10])

URI (Uniform Resource Identifier) - a unique sequence of characters that identifies a logical or

physical resource used by Internet web technologies. (see [24])

6-2 13th Symposium on Lift & Escalator Technologies

1 INTRODUCTION

While definitions of standard group control algorithms have been documented [1], the reality of

group control to date is that manufacturers have created proprietary designs that are inextricably

linked to their own lift equipment. The result is that it is not possible accurately to compare or

predict the effects on performance of different control policies during the design phase of a

building, or in advance of a refurbishment of the lifts. The benefit of a standard interface is that it

would make it possible to supply the dispatching capability in a component form that could be

"plugged" into any group of lifts that conforms to the interface.

Secondly, a dispatcher design which has been configured and validated using simulation can be

transferred directly into a physical installation with confidence, if both the simulator and the real

lifts use the same standard interface.

As lifts become better integrated with the other services of so-called "smart buildings" and with the

introduction of applications that allow passengers to register requests for lift travel via a variety of

channels [2] including personal mobile devices, an interface that allows simplified and standardised

secure access to the group call assignment mechanism becomes increasingly desirable.

Furthermore, performance and status monitoring capabilities, possibly added as a later enhancement

to an initial lift installation, would benefit from a standard interface, which would be consistent

across a number of buildings in, for example, a property portfolio.

A previous paper [3] analysed the requirements for a Global Dispatcher Interface (GDI) via which a

group of lifts could be controlled. Current trends and possible future developments in lift group

controller technology were reviewed so that the identified requirements are sufficiently broad and

flexible to avoid the analysis becoming prematurely outdated. The paper presented a structured

statement of the requirements that a GDI must satisfy, followed by an analysis of those

requirements using the Requirements Capture and subsequent Analysis phases of a light-weight

Systems Development Life-Cycle (SDLC) [4]. The outputs of these initial phases of the process are

• Passenger (user perspective) use cases

• Dispatcher (system perspective) use cases

• Requirements catalogue

• Domain object catalogue (defining roles and responsibilities)

These outputs take the form of a UML Model plus supporting report documentation generated from

the model and, because of their number and complexity, are published separately from the paper,

which can only present the key features and conclusions. The report documents can be found at the

project website [5]. The model has been developed and is maintained via a specialized tool [6]

which supports the entire SDLC.

A second paper [7] continues the SDLC process with a discussion of the design and development of

a functioning prototype. By definition, a software prototype [8] is not intended to be deployed in a

live situation serving real users (i.e. passengers, maintainers, managers, etc.), rather it is intended to

demonstrate the viability of delivering a variety of key functional capabilities, while other

characteristics may be only partially implemented or completely omitted. Further prototypes may be

produced, in order to explore other aspects of the GDI. After each prototype evaluation, the

software should be archived and at the conclusion of the final prototype the design and development

phases should be completely reiterated, but from that point onwards with the additional

requirements of security, performance, robustness and cost fully accounted for in the GDI design.

Global Dispatcher Interface - Initial Prototype Design 6-3

In addition to the GDI itself, the prototype demonstration system consists of:

- a configurable simulator (a commercial product [9]) of passengers and of lift car activity.

- new gateway software that has been developed to provide a more realistic representation of

lift and call registration activity, which in real life (as opposed to in a simulation program)

are enacted as independent asynchronous activities.

An important point, presented in [3], relates to the preferred use of open standards to provide the

generic hardware and software, which are of themselves not specific to lift systems. Thus the

discussion can concentrate on those considerations which are specific to lift systems. In response,

the GDI prototype sets out to demonstrate the delivery of dispatching functionality supported by an

infrastructure built of as many interoperating, heterogeneous and open technology standards (e.g.

programming language, network protocol, etc.) as it is practicable to include.

2 GDI ANALYSIS

The SDLC describes the process by which development should proceed, evolving the requirements

use cases into a set of more detailed System Use Cases. During the system analysis phase, a detailed

description text of each of the system use cases (the use case “story” or “flow”) provides the basis

for developing a detailed diagrammatic definition of the sequences of interactions that must occur

between the collaborating domain objects. Two principal use cases are identified - Assign Call and

Cancel Call - and it is important to understand that in a busy lift system, multiple instances of both

these use cases will exist concurrently and all at different stages of completion.

The domain objects have names like “Car” and “Landing Call Device” but represent very general

concepts rather than specific items of physical hardware - a level of detail that will not be developed

until a later stage. Sequence diagrams elaborate the messages passed between the objects as the use

case proceeds. A separate sequence diagram [10] is developed for each significant alternative route

(“scenario”) [11] through the use case (often the result of different outcomes from an If-Then-Else

like decision). For example:

“When the assigned car arrives at the call origin floor, if the dispatcher has not been

informed of the passenger's destination floor the passenger's call is then deleted from the list

of current calls. However, if the destination floor is known then the call is retained but its

status is changed to "Answered".

While there is insufficient space to include all of these sequence diagrams, they are available at [5]

and an example (Figure 1) is included for illustration. It is then through the elaboration of sequence

diagrams that the design phase of the SDLC can be commenced. During the design phase further

sequence diagrams are produced, but now showing the collaborations between the software

components which will be implemented, rather than abstract domain objects. This paper is

concerned with the design of the Global Dispatcher Interface only but the diagrams also consider

the operation of the dispatcher itself to ensure that all of the dispatcher requirements are supported

by the interface. The full set of design sequence diagrams is maintained at [12].

6-4 13th Symposium on Lift & Escalator Technologies

Figure 1 Analysis Use Case Sequence Diagram - Assign Direction Call

3 GDI DESIGN

The outputs of the design phase of the SDLC are:

- Sequence Diagrams

- Class library definitions

These will be the necessary inputs for the subsequent software development phase – in this case

development of the prototype.

3.1 Design Requirements

During the elaboration of the sequence diagrams some further design requirements are identified.

3.1.1 Standard Elevator Information Schema (SEIS)

The system use cases are described in terms of messages representing events that occur within a lift

system. These are changes in the information which describes the state of the lift system and are key

to ensuring the interoperability of all systems which communicate via the GDI. It is therefore of

critical importance that the communicated information content and inter-relationships are specified

in a formal and standardised manner. Such a formal specification is provided by a schema, and the

necessary schema already exists - the Standard Elevator Information Schema (SEIS) [13]1.

1Where this paper makes references to the data types of the SEIS schema, these are indicated by text in

CamelCase, which (for the digital format of this document) includes a hyperlink to the definition on the

website where the schema is published [13]

http://www.std4lift.info/

Global Dispatcher Interface - Initial Prototype Design 6-5

3.1.2 Publish and Subscribe Architecture

It is clear from the analysis sequence diagrams that the assignment resulting from a passenger’s

request to travel must be communicated not only to the passenger via the source of the request (call

device/application) but also, most importantly, to the assigned car (and possibly to all other cars as

well). Until the assignment is made, the cars are unaware that a call has been registered. So a

mechanism is required that will notify the car(s) without them having to continually poll the

dispatcher service “just in case”. This mechanism is provided by the Publish-And-Subscribe [14]

messaging pattern. With this pattern, any number of active elements (cars, call devices, etc.) may

request the GDI to publish a list of observable information sources against which they may submit a

“subscribe” request. The GDI will subsequently send a message to all subscribers each time an

event occurs associated with the information being observed (described by the Observer software

design pattern [15]).

3.1.3 Dispatcher Interface as a “Notice-Board”

It has been shown that the system use case sequence diagrams comprise messages being passed to

and from the GDI describing information events (conforming to SEIS) and since these events are

updates, it is implied that the GDI must maintain a record of the current state (an information

model), which is then to be updated. The GDI ensures that the information model is always kept up

to date and acts like a central notice-board where the elements of the lift system simply post their

current status, under specific subject headings (defined by SEIS). Coupled with the publish-and-

subscribe architecture, it becomes like a social-media notice-board where subjects of interest can be

“followed” (i.e. subscribed to). This is a very important property of the GDI since none of the lift

system elements is assuming to understand or maintain expectations of the operation (or even the

existence) of any other element which may receive its messages. In software engineering this

characteristic is referred to as ‘separation of concerns’ [16].

The resulting interface is compatible with any dispatcher algorithm technique from dynamic

sectoring to neural networks based on cost functions, and therefore the inevitable debate is avoided

about which parameters must be passed in any call to the interface.

This mode of interaction allows an enormous amount of flexibility in the configuration and

component architecture of lift systems which may use the GDI. Figure 2 illustrates some of the

many possible configuration options.

6-6 13th Symposium on Lift & Escalator Technologies

3.2 Component Architecture Flexibility

Figure 2 Some GDI architecture options

Global Dispatcher Interface - Initial Prototype Design 6-7

3.2.1 Configuration option - Algorithm Behind Interface

The use case sequence diagram (Figure 1) shows the cars and landing call devices sending

messages to the dispatcher interface with the dispatcher algorithm located “behind” the interface,

implying a simple function call from the algorithm to update the information maintained by the

dispatcher interface with the assignment result.

3.2.2 Configuration option - Algorithm as Subscriber

In some configurations it may be more appropriate for the algorithm to be implemented simply as

another subscriber to the interface (a.k.a. Notice-Board) leaving nothing “behind” the interface.

3.2.3 Configuration option - All Functionality Behind Interface

On the other hand, in some circumstances it may be preferred to have all elements of the lift system

control software implemented as a single software component that sits “behind” the interface. In

this case the interface would operate simply as a reporting mechanism via which data logging and

status monitoring equipment could be connected.

3.3 RESTful Interface

It has already been noted that messages to and from the GDI represent information events that are

defined in terms of SEIS. Each message is either placing new information into the information

model or reading the current state from the information model. Updates of the information model

might simply change the value of an existing element in a list of the information model, e.g. Car4

Direction is now UP (the action of this message is called “PUT”). Alternatively, the event message

may create a new element in a list, e.g. a landing call has been registered (the action of this message

is called “POST”). In this case a unique identifier is attached to the element so that it can be

referenced in future, for example when information is read from the information model (the action

of this message is called “GET”). We can conclude therefore that messages do not make calls to the

specific functions of the dispatcher, nor any other aspect of operation of passenger lifts. Instead, the

same set of standard generic functions (called “methods”)

• POST

• PUT

• GET

can be requested from each observable node of the information model.

These functions might be implemented as a ‘RESTful’ [17] interface which may be implemented in

a variety of available programming technologies and languages. The elements of the information

model are “resources” in REST terminology. Furthermore, we see that resources which have a

multiplicity greater than 1 (i.e. lists) must support queries using the properties and referenced links

of the node.

A valuable characteristic of REST is its independence of any network topology (e.g. proxies,

gateways, firewalls, etc.), so it is scalable. If required, a single instance of the GDI might therefore

support a number of groups of lifts, located in the same building or campus or might even be made

available via the Internet as a cloud service. Conversely, one large group of lifts serving many

floors will have a heavy computational burden and so might require multiple instances of the

dispatcher to be accessed transparently through what appears to be the same GDI.

The GDI prototype complies with all 6 REST constraints – see [17]. Additionally, access

permissions to each published node (resource) of the SEIS information model must be considered:

6-8 13th Symposium on Lift & Escalator Technologies

3.3.1 Access Rights

The GDI should implement an overall security policy to restrict access (including subscription) to

authorised clients only. Access rights will be established during execution of the Registration use

case, but this is not discussed further in the current paper.

3.3.2 Create/Update access restricted to “owned” resources

The ability of a client to create and update resources via the GDI is limited to those resources that

are “owned” by the client. Thus a car may update any attributes of its own CarDynamicData or

CarStaticData but not those of another car.

Landing call devices may create (POST) a new LandingCall in the list but updating (PUSH) the

resulting LandingCall is owned by the dispatcher.

It is a matter of internal design of the dispatcher whether LandingCalls are deleted or retained when

their Status becomes Cancelled and should be considered as part of the greater discussion of data

logging and retention [2].

4 PROTOTYPE DEMONSTRATOR

The purpose of the prototype is to demonstrate and validate the ability of the GDI design to support

the functionality that is particular to the task of lift system dispatching. To achieve this objective, it

is necessary to build a complete and realistic environment in which the dispatcher interface can

operate. Such an environment needs to have access either to several operational lift installations or

to a variety of configurations of simulated groups. The different configurations must allow the

prototype to be driven by both direction and destination passenger call stations and to demonstrate

different numbers of cars and patterns of passenger demand and floors served. The environment

selected for the prototype is illustrated in Figure 3. Implementation and test of the prototype are

discussed in greater detail in [7].

Figure 3 Prototype Implementation

http://std4lift.info/HTMLSchema/index.html?url=cardynamicdata.html
http://std4lift.info/HTMLSchema/index.html?url=carstaticdata.html
http://std4lift.info/HTMLSchema/index.html?url=landingcalltype.html
http://std4lift.info/HTMLSchema/index.html?url=status1.html

Global Dispatcher Interface - Initial Prototype Design 6-9

More general technical considerations, such as network performance, security, robustness, etc., are

addressed only in as much as it is necessary to achieve a realistic and operational prototype.

In an attempt to demonstrate that the prototype design is not dependent on specific technologies, the

selection of network protocols, software frameworks, programming languages, computer hardware

and operating system environments has been chosen to be as diverse and heterogeneous as possible

and is summarised in the following sub-sections.

4.1 Lift System Simulator

For this prototype, an accurate lift system simulation [9] of lift cars, passengers and call stations has

provided a realistic, flexible and permanently accessible solution. Of great importance to the

prototype, the dispatcher algorithm, which controls the assignment of landing calls, may be

configured as being provided via a system that is external to the simulator. The simulator runs on

the Microsoft Windows platform.

4.2 Simulator Connector .DLL

In this case the user-programmable “algorithm” is replaced by connection software (“DispatchW

Connector” component in Figure 3 - a Microsoft Windows .DLL). Developed in C++, this doesn’t

itself contain the algorithm but instead simply splits the information from the simulator, according

to its subject matter (cars or landings calls), into separate streams of data events to produce a more

realistic environment (using Microsoft sockets API – WinSock [18]).

4.3 Landing Call-station and Car Gateway Application

In a further attempt at realism, a Gateway software application has been developed to undertake a

variety of transformations of the data events received from the simulator and similarly for

information being returned in the opposite direction. In order to demonstrate the “global”

applicability of the GDI we must consider that any part of the lift equipment interacting with it may

not be able to produce the necessary information at the appropriate time or in a suitable format. It

may be that some manufacturers would integrate such a gateway with their equipment, thereby

maintaining the confidentiality of their own intellectual property. Others may prefer to delegate the

development of gateway software to a third party. A similarly flexible approach is specified for the

connection of lift systems for data monitoring by the National Standards Committee of the People’s

Republic of China [19].

The gateway is written as a Java application, allowing it to run in a very wide variety of operating

environments. It communicates with the GDI using the Eclipse Californium CoAP library [20].

4.4 Global Dispatcher Interface Executable

The prototype GDI itself is written in C# and executes on a separate computing device – a

Raspberry Pi running the Windows IoT core on the Universal Windows Platform (UWP).

The GDI software is based on a Windows .Net library implementation [21] of CoAP [22] –

Constrained Application Protocol – which is specifically designed to minimise processing and

communication demands and which:

• supports a RESTful interface and

• enables discovery of resources through the "/.well-known/” URI

• supports subscription to observable resources

• supports a number of message payload formats including JSON, XML and plain-text, which

may be used concurrently and interchangeably in a single implementation.

Whilst there are several available alternatives to CoAP, it was chosen because it offers the above

capabilities and because the computing power and network bandwidth available to such an

6-10 13th Symposium on Lift & Escalator Technologies

application, probably running in the lift motor room, are likely to be ‘constrained’. However, an

eventual commercial product may well employ a different open standard protocol.

4.5 Global Dispatcher Prototype Sequence Diagram

Now that the components of the prototype have been identified, the design process continues by

developing the sequence diagrams illustrating the CoAP message interactions between actual

elements of software. Each sequence diagram is a refinement of the corresponding analysis use case

sequence diagram. For the purposes of this paper, a single example of a design sequence diagram is

presented in Figure 4. For the prototype, the interacting software elements are implemented as

independent components, but this is not a requirement, and an integrated single executable may be

preferable for eventual commercial product implementation.

Figure 4 Prototype - Direction Call Registration and Assignment

5 CONCLUSIONS

An overview of the design of a Global Dispatcher Interface has been presented using standard

software design methods. Starting with a set of analysis use cases and associated catalogue of

requirements, sequence diagrams illustrating the interactions between software components have

been developed to document the design of the GDI. A prototype demonstration environment has

been built, implementing the GDI design, interoperating via custom gateway software with a

realistic software simulation of passengers and lifts in order to validate the design.

The material presented in this paper is part of an ongoing research and development project and has

yet to be implemented commercially. The author welcomes comments and questions regarding

Global Dispatcher Interface - Initial Prototype Design 6-11

possible improvements, errors and omissions. The next iteration of the prototype will explore and

validate the potential offered by a distributed dispatcher interface.

5.1 End Note - Security

The introduction to this paper noted that the prototype, which is its subject, does not address general

requirements of the GDI that are not specific to the domain of lift systems dispatching. However, it

is important to stress in these concluding remarks that security must be placed at the forefront of

considerations when developing a commercial product embodying the GDI. Even where the GDI is

not connected directly to external networks, it is nonetheless capable of acting as an unintended

route for malicious agents to gain access to the lifts or other external systems. Therefore, a full risk

assessment must be carried out on a regular basis (extending throughout the product lifetime), and

any exposed risks mitigated by regular updates. Refer to CIBSE Guide D. 2020 Transportation

Systems in Buildings [2] for a more detailed discussion.

REFERENCES

[1] Barney, G.C. and Al-Sharif, L. (2016) Elevator Traffic Handbook, Second edition, Chap.12,

Routledge, Abingdon UK, 2016, ISBN 978-1-138-85232-7.

[2] CIBSE-Ch14. (2020). CIBSE Guide D. 2020 Transportation Systems in Buildings. Chap 14,

The Chartered Institution of Building Services Engineers.

[3] Beebe, J (2018). “Towards A Global Traffic Control (Dispatcher) Algorithm - Requirements

Analysis”, Transportation Systems In Buildings, Vol 2, No 1 (2018), University of

Northampton, Available from:

http://journals.northampton.ac.uk/index.php/tsib/article/view/147 . (accessed 05-Jun-2022)

[4] SDLC(2021) see “Software development process”, Wikipedia, Available from:

https://en.wikipedia.org/wiki/Software_development_process. (accessed 11-Jul-2022)

[5] Beebe, J (2021), “Analysis products”; https://dispatcher.std4lift.info/ (accessed 11-Jul-2022)

[6] Sparx (2021), Sparx Systems Enterprise Architect. Available from:

https://www.sparxsystems.com/ (accessed 11-Jul-2022)

[7] Beebe, J (2022). “Towards A Global Traffic Control (Dispatcher) Algorithm - Interface

prototype design”, Transportation Systems In Buildings, Vol 4, No 1 (2022), University of

Northampton, Available from:

http://journals.northampton.ac.uk/index.php/tsib/article/view/158 (accessed 05-Jun-2022)

[8] Software Prototyping (2021), see Software prototyping, Wikipedia, Available from:

https://en.wikipedia.org/wiki/Software_prototyping. (accessed 11-Jul-2022)

[9] Peters Research (2021). Elevate™ traffic analysis and simulation software. Available from:

https://www.peters-research.com/index.php/elevate/about-elevate. (accessed 11-Jul-2022)

[10] Alhir, Sinan Si.(1998), “UML in a nutshell”; pp85-94 “Sequence Diagrams”, O’Reilly &

Associates, Inc., Sebastopol CA, USA, 1998, ISBN 1-56592-488-7.

[11] Bitner, K and Spence, I.(2008), “Use Case Modelling”, pp196, “What is a Scenario”,

Addison-Wesley, London, 2008, ISBN 02011709139.

[12] Beebe, J (2021), “Design products”; https://dispatcher.std4lift.info/GlobalDispatcher-

PrototypeDesign.pdf (accessed 11-Jul-2022)

[13] Beebe, J. (2021)"Standard Elevator Information Schema", https://www.std4lift.info/ ..

(accessed 11-Jul-2022)

[14] Publish-Subscribe (2021), Publish–subscribe pattern, Wikipedia, Available from::

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern (accessed 11-Jul-2022)

http://journals.northampton.ac.uk/index.php/tsib/article/view/147
https://en.wikipedia.org/wiki/Software_development_process
https://dispatcher.std4lift.info/
https://www.sparxsystems.com/
http://journals.northampton.ac.uk/index.php/tsib/article/view/158
https://en.wikipedia.org/wiki/Software_prototyping
https://www.peters-research.com/index.php/elevate/about-elevate
https://dispatcher.std4lift.info/GlobalDispatcher-PrototypeDesign.pdf
https://dispatcher.std4lift.info/GlobalDispatcher-PrototypeDesign.pdf
https://www.std4lift.info/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

6-12 13th Symposium on Lift & Escalator Technologies

[15] Gamma, et al (1995) Erich Gamma; Richard Helm; Ralph Johnson; John Vlissides (1994).

Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley.

pp. 293ff. ISBN 0-201-63361-2.

[16] SeparationOfConcerns (2021). Separation of concerns. Wikipedia, Available from:

https://en.wikipedia.org/wiki/Separation_of_concerns (accessed 11-Jul-2022)

[17] REST (2021), Representational State Transfer [Internet], Wikipedia, Available from:

https://en.wikipedia.org/wiki/Representational_state_transfer (accessed 11-Jul-2022)

[18] WinSock (2021), Microsoft, Winsock Network Protocol Support in Windows. Available from

: https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-in-

windows (accessed 11-Jul-2022)

[19] PRC (2021) National Standards Committee of People's Republic of China. GB/T 24476-2017

- Specification for internet of things for lifts, escalators and moving walks. 2018. Available

from: https://www.chinesestandard.net/PDF/English.aspx/GBT24476-2017 (accessed 11-Jul-

2022)

[20] Californium (2021), Eclipse Foundation, “Eclipse Californium”. Available from:

https://www.eclipse.org/californium/ (accessed 11-Jul-2022)

[21] Waher, P. (2018), Mastering Internet of Things, Chap 10 The Controller, Packt Publishing

Ltd. (www.packtpub.com),ISBN 978-1-78839-748-3.

[22] CoAP (2014), Internet Engineering Task Force (IETF), “The Constrained Application

Protocol (CoAP)”, RFC 7252. Available from: https://tools.ietf.org/html/rfc7252.(accessed

11-Jul-2022)

[23] JSON (2022), JavaScript Object Notation, Wikipedia, Available from:

https://en.wikipedia.org/wiki/JSON (accessed 11-Jul-2022)

[24] URI (2022), Universal Resource Identifier, Wikipedia, Available from:

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier (accessed 11-Jul-2022)

BIOGRAPHICAL DETAILS

Jonathan Beebe has more than 40 years’ experience of bringing the latest software design and data

modelling technologies into the domain of lift system control and monitoring. Following his PhD

thesis entitled “Lift Management” (completed at a time when there were virtually no computer-

controlled lifts anywhere in the world) he was employed to design and implement software

for dispatcher algorithms and single car controllers coupled with a remote performance

monitoring system.

Throughout his career Jonathan has maintained an active interest in research, resulting in

the publication of The Standard Elevator Information Schema (SEIS) in 2003. SEIS is

published under the Creative Commons licence with free and open access to anyone interested.

Jonathan’s current research project is developing a Global Dispatcher Interface (GDI), based

entirely on the SEIS. GDI looks forward to the era of smart buildings and cities in which

vertical transportation systems will play a fundamental role.

https://archive.org/details/designpatternsel00gamm/page/293
https://archive.org/details/designpatternsel00gamm/page/293
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-63361-2
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Representational_state_transfer
https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-in-windows
https://docs.microsoft.com/en-us/windows/win32/winsock/network-protocol-support-in-windows
https://www.chinesestandard.net/PDF/English.aspx/GBT24476-2017
https://www.eclipse.org/californium/
http://www.packtpub.com/
https://tools.ietf.org/html/rfc7252
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

