SIMULATION FOR CONTROL SYSTEM DESIGN AND TRAFFIC
ANALYSIS

Richard D Peters
Peters Research Ltd, 47 The Crescent, High Wycombe, Bucks HP13 6JP, UK
fax: +44 (0)1494 452359, email: richard.peters@peters-research.com

1.

ABSTRACT

Elevate is a development platform for elevator control systems and an advanced
elevator traffic analysis tool. The program is written in the C++ language using the
latest object oriented programming techniques, and has a Microsoft Windows' user
interface. Passengers are generated automatically from arrival rates entered by the
user. The elevators answer passenger calls as directed by the selected dispatcher
algorithm. An analysis of passenger waiting and transit times is given. Elevate
applies research in ideal elevator kinematics giving total control of elevator speed

profiles.

INTRODUCTION

Elevate is a development platform for elevator control systems and an advanced elevator
traffic analysis tool. Elevate’s features and functions include:

Dynamic simulation providing a visual display of the elevators as they answer passenger
landing and car calls.

A Microsoft Windows mterface.
Advanced traffic analysis tool for planning elevator installations.

Full user control over the inputs to the systems, e.g. number of elevators, speeds, passenger
arrival rates.

Standard and Advanced options allowing the user to enter basic information for a quick
analysis, or comprehensive data for a detailed model.

Kinematics research applied to generate accurate elevator speed profiles.

Results include graphs of passenger waiting and transit times.

Data and results can be transferred to a spreadsheet for further analysis if required.
Programmed in Microsoft Visual C++ using object oriented technology.

Platform for developing, testing, and demonstrating control systems.

In this paper we will review how Elevate is designed using object onented technology, give
an overview of its interface, and discuss some applications.

|
%
|
%
.

Simulation for control system design and traffic analysis 227

2. OBJECT ORIENTED PROGRAMMING

Traditional structural programming techniques break a program into several smaller tasks by
defining a set of functions. Object oriented programming (OOP) builds on structured
programming techniques by introducing objects. The variables and functions of an object are
defined by the class to which it belongs.

For an example of how OOP is mimicking the
real world, consider Ginger the cat in Figure 1.

The world has a class cat. Everything in the
cat class has a set of the same variables (no of
paws, age, sex, etc.) and a range of functions (if
you chase it, it runs; if you pat it, it purrs).
“Ginger” is an object, and an instance of the

cat class. He has all the functions and

variables of a cat.

Figure 1 Ginger the cat graphic from [1]

Once a class is defined, its complexities are hidden, so we can create and apply objects
simply. In this way OOP helps break down complex problems into manageable parts that are
easy to work with as they represent familiar ideas or components.

Applying this approach, consider a circle class with a radius variable 7, and functions
CalculateArea() and DrawCircle(). Here is an extract of a C++ application using the circle
class (the functionality of which has been defined elsewhere):

// (double lines precede comments)

//create a circle object, called "cir" with a radius r
circle cir(r);

//display the circle's area
cout << "The area is " << cir.CalculateArea() ;

//draw the circle on the screen
cir.DrawCircle () ;

Returning to elevators, we can define the class elevator with variables such as capacity and
speed, and functions such as StartJourney(). We can create as many elevator objects as we
need; each elevator object is independent, but may use all the variables and functions defined
by the class.

228 R.D.Peters, Peters Research Ltd, England

3. APPLYING OOP TO ELEVATE

Elevate has six main classes which it uses to implement a simulation. They are:

building The building class defines the building in terms of number of stories and
story heights.
motion The motion class generates elevator kinematics curves, examples of which

are given in Figure 2. To use this class, an “clevator” specifies the journey
distance, rated velocity, acceleration and jerk; motion outputs the current
distance travelled, and velocity at any time, t since the journey began.

3

254 .

3%]

Velocity (m/s)
&

—

o
n

[

2 4 6 8 10
Time (s)
Figure 2 Example velocity curves produces by motion class.

<

elevator The elevator class defines an elevator (rated speed, capacity, floors served,
etc.) and its current status (position, speed, load, etc.). The motion class is
applied to enable the elevator to move according to the selected journey
profile. The elevator class includes algorithms to allow elevators to answer
landing and car calls according to the principles of directional collective
control. (Most elevator control systems adopt a directional collective
control strategy regardless of the complexities of their dispatcher algorithm.)

dispatcher The dispatcher class defines rules for deciding which elevator is to serve
each landing call. The standard dispatcher logic has been based on
conventional group control with dynamic sectoring as defined by Barney
and dos Santos[2].

person The person class defines a person, what time he/she arrives at the landing
station, where he/she wants to go, their mass, etc. Once the journey is
complete, the class provides details about passenger waiting and transit
times.

traffic The #raffic class converts user information about the passenger traffic into a
corresponding set of person objects.

Simulation for control system design and traffic analysis 229

4. DATA ENTRY

Elevate’s interface is Windows based, and allows the user to edit all the system data in dialog
boxes containing standard Windows controls (radio buttons, drop downs, etc.), and a
spreadsheet-like control for tabular data entry. The program uses a multi-document interface,
so the user can be working on a number of different simulations at the same time. In addition
to the standard Windows features (save, print, etc.) there are five data entry dialog boxes
which can be accessed via the menus or button bar:

Building data

Elevator data

Passenger data

Simulation data

Job data

Figure 3 Examples of data entry dialog boxes

In Building data the user enters floor names and levels,

In Elevator data the user enters details about the elevators. The dialog box
has two modes. In Standard mode only basic information is entered, e. g.
number of elevators, capacity, speed; Elevate selects default values for other
variables. In Advanced mode, the user can edit all parameters including the
acceleration, jerk, motor start delay, and dwell times.

In Passenger data the user enters details of the passengers that will be
transported by the elevators. Again, there are two modes of operation. In
Standard mode the user enters basic information, e. g. a five minute handling
capacity and floor populations (as a basis for determining passenger
destinations). In Advanced mode the user can define complex traffic flows
using arrival rates and destination probabilities.

In Simulation data the user can select the control algorithm, time slice, and
frequency of the graphical display being updated.

In Job data the user can enter job and calculations titles.

uilding:Data

—

Elevator.Data

=

230 R.D.Peters, Peters Research Ltd, England

S. RUNNING THE SIMULATION

The passenger generator uses the traffic class to create passengers (person objects) in software
based on the Passenger data entered by the user.

The program then performs a time slice simulation; it calculates the status (position, speed,
etc.) of the elevators, increments the time, re-calculates status, increments time, and so on.
Provided that there are not too many other demands on the computer’s processor, the
simulation will run faster than real time on a Pentium PC using a time slice of 0.01 seconds.

The main area of the screen is used to give a visual display of the simulation as shown in
Figure 4. The user can zoom in/out of this display using buttons on the Toolbar.

Time ¢hrs sec) 11:01:15 Diraction Il N by %
AT () 12.2 i Position 3420 1140 4660 2522
ATT (s) 15.2 (Speed (M#s) 000 0DO0 D00 148
Dispatcher hiode i Load (eg) 37 D b 75

Fiear T e Landmg R
Name i Calls i 2 3 4

Leval 16
Lewvel 18
Lavel 14
Leval 13
Level 12
Leval 11
Leval-10
Level @
Leval 8
Level 7
Lavel 6
Level 5
Level 4
Lewvel 3
Lavel 2
Level 1

Lo
v
Loy

Y

Fe

i

R =T NI - N~ - - R W W ’§
H
=
=
&

=

Figure 4 Simulation display

~

Elevators are displayed according to their current position and door status:

Indicates that the elevator’s doors are fully closed.

] [Indicates that the elevator’s doors are opening or closing.

Indicates that the elevator’s doors are fully open.

Simulation for control system design and traffic analysis 231

Landing and car calls are displayed according to their status:

AV Red arrows indicate which up and down landing calls have been registered by
waiting passengers at each floor.

B Red squares indicate car calls registered by the passengers travelling in each
elevator. Car calls are aligned with the floors for which they are registered.

P Indicates a parking call used to re-locate an “idle” car (used in up peak
algorithms).

The current direction, position, speed and load is displayed above each elevator. The number
of passengers queuing is displayed at each floor.

6. RESULTS

Once the simulation is complete, a print preview of the data and results are displayed as
shown in Figure 5. Results include:

e average waiting time, longest waiting time, and a plot of the waiting time distribution.

o average transit time, longest transit time, and a plot of transit time distribution.

fage. 1of2

i Elevate
lok o,

Calculaned Tide. Yersgion 1.0

Made By.

FletDase. Deaani 20 lag 1O0B K2 Pereed Restarch Lid, 1993

PASSENGER WAITING TIME RESULTS (4 Ho. 1000 elevators @ 2.50 m/s)

e calia
adgmered
[ER-1 an

W

Average Wandg Tuw (4)

Figure 5 Results displayed on screen

232 R.D.Peters, Peters Research Ltd, England

In addition to these results, a file is written to disk that includes details of every passenger
generated by Elevate: what time they arrived, at which floor, what was their destination, what
were their individual waiting and transit times, etc. This file can be loaded into a spreadsheet
for further analysis if required.

7 APPLICATIONS
7.1 Control System Design

The object oriented nature of Elevate makes it relatively straightforward to design new control
systems by revising the dispatch object.

The dispatch object has to review new landing calls, and allocate them to an appropriate
elevator. The elevators can be queried to find out their position, direction of travel, load, etc.
For example, given an array of elevator objects, e

//the current position (m above reference) of elevator 2 is
e[2] .m_CurrentPosition;

//the direction (where -1 down, 0 none, 1 up) of elevator 2 is
e[2] .m Direction;

//this allocates an up landing call to elevator 2 for floor 5
e[2] .m UpLandingCalls[5]=1;

Once calls have been allocated to an elevator, the elevator will answer the landing calls in the
right order, and accept car calls from the passengers. These and all the other features of
Elevate are available to the new control system without additional programming.

The result of this approach is that new control systems can be implemented in Elevate in as
little as 300 lines of software code.

Elevate has been used to develop and test a range of control systems. Its application in the
research and development of energy saving, green elevator control systems is discussed in [3].

7.2 Traffic Analysis

Elevate can be used to analyse the elevator performance of all building types including
offices, hotels, hospitals, shopping centers, flats, warehouses, etc. Unlike conventional “up
peak” round trip time calculations, you are not restricted to passengers loading at the ground
floor; all types of passenger and goods loads can travel between all floors.

An example print out of data/results in Appendix 1 shows how Elevate can be used to model
the performance of a elevator system in a shopping center. Note that in a shopping center:

e people will be arriving at all floors

e some passengers will be alone, others may be with children in buggies. By entering
passenger traffic in “periods” Elevate allows you to have different types of passengers

Simulation for control system design and traffic analysis 233

using the elevators at the same time. In this example, an adult with a child in a buggy can
be set to take more room in the elevator, and to take longer to get into and out of the
elevator.

8. CONCLUSIONS

Elevate has been designed as a development platform for elevator control systems and as an
advanced traffic analysis tool.

Elevate is written in Microsoft Visual C++. It uses object oriented techniques, breaking down
the programming tasks into classes. These classes represent objects (e.g. elevator, person,
building) which are straight forward to conceptualise, and therefore easier to work with.

The interface is Windows based. The user enters data about the system into dialog boxes
titled: Building data, Elevator data, Passenger data, Simulation data and Job data.

The program performs a time slice simulation, providing a graphical representation of the
elevators as they serve the passenger calls. Once the simulation is complete, Elevate displays
results on screen in a print preview format. These results include details of input data, waiting
times and transit times.

REFERENCES

1 Perry G, Ross J Visual C++ By Example (Indianapolis: Que Publishing) (1994)

2 Barney G C, dos Santos S M Elevator Traffic Analysis Design and Control (London:
Peter Peregrinus) 2™ edition (1985)

3 Peters R D, Mehta P Green Lift Control Strategies The International Journal of
Elevator Engineers, Volume 2 (1998)

BIOGRAPHY

Dr Richard Peters has a degree in Electrical Engineering, and was awarded a Doctorate for his
research thesis Vertical Transportation Planning in Buildings. He pursues a broad range of
professional interests including Mathematical Modelling, Computing, Vertical Transportation,
and Environmental Engineering. He began writing traffic analysis software in 1987 and has
subsequently developed a range of analysis techniques and software programs which are
applied internationally. He is a Director of Peters Research Litd.

234 R.D.Peters, Peters Research Ltd, England

Page: Tof2
Job: APPENDIX 1 EI evate
Jcoali 1310: Tid g;lmulatioréglr Conut-gl System Design and Traffic

culation Title: Shopping Centre with Car Park
Made By, vip Version 1.1
File/Date: Example 3.elv 31 Jul 1998 © Peters Research Ltd. 1998
BUILDING DATA
Floor Name Floor Level (m)
Mall | 0.00
Mall 2 3.80
Mall 3 7.60
Park | 11.40
Park 2 15.20
ELEVATOR DATA

Carl Car2 Car3 Card

Capacity (kg) 1600 1600 1600 1600
Speed (mg() 1.00 1.00 1.00 1.00
Acceleration (m/s/s) 0.40 0.40 0.40 0.40
Jerk (m/s/s/s) 0.80 0.80 0.80 0.80
Home Floor Mall1 Malll Malll Malll
Motor Start Delay (s) 0.50 0.50 0.50 0.50
Door pre-openning time (s) 0.00 0.00 0.00 0.00
Door open time (s) 1.80 1.80 1.80 1.80
Door close time (s) 2.90 2.90 2.90 290
Door dwell 1 (s) 6.00 6.00 6.00 6.00
Door dwell 2 (s) 3.00 3.00 3.00 3.00

PASSENGER DATA (Period 1)

Start Time 0:00

End Time 0:05

Loading Time (s) 1.50

Unloading Time (s) 1.50

Passenger Mass (kg) 75.00

Loading Threshold (%) 60.00

Notes Passengers

Floor Name Arrival Dest. Dest. Dest. Dest. Dest.

Rate Prob Prob Prob Prob Prob
(Persons Mall1 Mall2 Mall3 Park] Park2

/5 mins) (%) (%) (%) &) (%%
20,00 0.00

Mall { X . 25.00 2500 2500 25.00

Mall 2 2000 2500 0.00 2500 25.00 25.00

Mall 3 2000 2500 2500 0.00 25.00 25.00

Park 1 1500 3330 3330 3330 0.00 0.00

Park 2 15.00 3330 3330 3330 0.00 0.00

PASSENGER DATA (Period 2)

Start Time 0:00

End Time 0:05

Loading Time (s) 2.50

Unloading Time (s) 2,50

Passenger Mass (kg) 150.00

Loading Threshold (%) 50.00

Notes Adult with child in pram/buggy

Floor Name Arrival Dest. Dest. Dest. Dest. Dest
Rate Prob Prob Prob Prob Prob
(Persons Mall1 Mall2 Mall3 Park]l Park?
/3 mins) (%) (8 6 (%0 (%)

Mall 1 7.00 0.00 2500 2500 2500 25.00

Mall 2 7.00 2500 0.00 2500 2500 25.00

Mall 3 7.00 2500 25.00 0.00 25.00 25.00

Park 1 5.00 3330 3330 3330 0.00 0.00

Park 2 5.00 3330 3330 3330 0.00 0.00

SIMULATION DATA

Dispatcher Algorithm Group Collective

Time slice between simulation calculations (s) 0.01

No of time slices between screen updates 10

Job No
Calculation Title:
Made By:
File/Date:

Simulation for control system design and traffic analysis 235

20f2

APPENDIX 1

Simulation for Control System Design and Traffic
S;xoppmg Centre with Car Park

p
Example 3.elv 31 Jul 1998

PASSENGER WAITING TIME RESULTS

time (s)

100,

80

60 |
% calls
answered
in time 40

20

0 20 40 60 80 100

Average Waiting Time (s) 17.7
Longest Waiting Time (s) 89.6
PASSENGER TRANSIT TIME RESULTS

100,

80

60
% complete
in time

40 |

20

0 20 40 60 80 100

Average Transit Time (s) 48.2

time (s)

Longest Transit Time (s) 106.1

Elevate

Version 1.1
© Peters Research Ltd. 1998

200

200

