Elevator Software Development Process
using Feature-Oriented Analysis & Modeling

B.W. Choi*, K.B. Jang*, C.H. Kim*, K.C. Kang**, S.J. Roh", C.W. Kim"
*LG Industrial Systems, R&D Center, Core Technology Laboratory

**Pohang University of Science and Technology

‘LG Industrial Systems, Building Systems Research Laboratory

Abstract

Elevator systems are very complicated, hard real-time systems that have
various functions and features. It makes difficult to develop new models especially on
requirements change. In order to make our elevator development faster, easier and
more reliable, a new software development process focused on software reuse is
introduced. This process has been applied from the early phase of the software lifecycle
in addition to conventional software engineering techniques. It is called Feature-
Oriented Reuse Method (FORM). Using FORM, we could describe those complicated
elevator systems in more understandable form, utilize reusability of requirement
specifications and easily adopt new requirements. In this paper, we describe the
elevator feature model based on FORM, and also briefly introduce design and
implementation process and tools.

1. Introduction

As well as other software, the elevator control software is also getting bigger
and more complicated due to adding new functions and adopting customers’ demands.
In order to achieve faster and easier development for bigger, more complicated, but
more robust software systems, software engineering should be properly applied.
Especially when considering productivity, software reuse is the most important.
Software reuse was meant by code-level reuse in its early days, but now it extends its
range to the most of the entire software life cycle from the user requirements to final
codes. The reuse of the products in earlier phases of the software life cycle is more
effective than the reuse of the source codes since the former is independent of
programming languages [2] and advantageous for improving software quality. But there
is few software development process which really considers the reusability in the user
requirements specification and analysis phase. Feature-Oriented Reuse Method (FORM)
proposed by K.C. Kang [1] is the software development method that considers those
aspects.

The elevator control system software has been developed from the assembly
era so a lot of software developers are still familiar with function-oriented development
style that is not quite adequate to the modern reuse scheme. Also, since a lot of
decision-making logic and real-time requirements are involved, it has been very
difficult to change the system according to new requirements caused by the users or the
operating environment. And the elevator is basically the order-based product so the
specifications of each elevator can be different from each other. That causes a necessity
of a better method to apply user’s requirements to the system effectively. With all these

Elevator software development process 65

reasons, a new software development method has been developed and applied to our
new elevator control system development. The method is based on FORM method
mentioned above, but is slightly modified considering the characteristics of the elevator
systems and our development process. Also, we have developed CASE (Computer-
Aided Software Engineering) tools for automating the process.

This paper presents the concept of FORM method in a simple form, a brief
introduction to our software development process, from the requirement analysis to the
final code generation, including the tools for the process. Even though the each of the
entire process is important, we are concentrated on the analysis and feature modeling.
So the feature model of the elevator control system is also presented. Feature-oriented
analysis and modeling has been proven as a very useful and effective method to model
the complicated elevator control system.

2. FORM (Feature-Oriented Reuse Method)

FORM is a systematic method that looks for and captures commonalities and
differences of applications in a domain in terms of features and using the analysis
results to develop domain architectures and components. The model that captures the
commonalities and differences is called the feature model and it is used to support both
engineering of reusable domain artifacts and development of applications using the
domain artifacts. The use of features is motivated by the fact that customers and
engineers often speak of product characteristics in terms of features the product has
and/or delivers. They communicate requirements or functions in terms of features and,
to them, features are distinctively identifiable functional abstractions that must be
implemented, tested, delivered, and maintained [1].

Figure 1. FORM Process Overview.

J

-

FORM Domain Engineering

Reference’ Referenc Reusable

Archltecture Component
Architecture

Development Development

/

Reusable
omponent

/

Feature
Model

Domam
Analysxs

/
/.

\ B/

N
.

RN

________________*

User Feature : Apphcatxon Application licatio
Reqmrement Selectton % Software PP
Tvsi Software
vSpyecxff catgqn‘ Development;

FORM Application Engineering

-

_

LEGEND

=

Model Reuse Feedback for updating the Domain Mode!

Process Product

66 Choi, Jang, Kim, Kang, Roh, Kim, LGIS, S.Korea

Figure 1. shows the FORM process. FORM process consists of domain
engineering and application engineering flows. Through domain engineering, a feature
model, a reference architecture and a reusable components are produced. After the
feature model is developed, domain architecture should be made from it. The domain
architecture is used as a reference architecture for creating architectures for different
systems. It consists of three different models, each of which represents the architecture
at a different level of abstraction. Those are subsystem model, process model, and
module model [1]. The subsystem model defines the overall system structure by
grouping functions. The process model represents the dynamic behavior of each
subsystem. The module model describes the appropriate module structure of the system.

Domain engineering can be simply said to produce reusable resources such as
features, architectures, and reusable components. On the other hand, application
engineering actually makes products using the resources produced by domain
engineering. Application engineering starts from the feature selection. This is done by
first analyzing user’s requirements for the target application, and finding a matching set
of features from the feature model. Then appropriate architecture is identified from the
reference architecture. Once the reference architecture is identified, reusable
components are easily found by following the specifications and methods encoded in
the modules. With the skeletons made through the application engineering, adding small
amount of codes into the components will complete the application development. As
you see, the strong point of FORM method is that FORM makes user’s requirements
reusable format. And selecting features leads to the final application very systematically.

3. Software Development Process for Elevator Control System

Figue 2. Elevator Control System Development Process.

Application Engineering

Feature Simulation L Code v
Selection Analysis I Generation Ny
Application
User Software
Requirements
Domain Mbdéling
Context Feature [l = | Operational : Architecture
Analysis Modeling {771 Modeling : Modeling §
Legend
o Candidate g Object Object
By Object & Definition Implementation el
Domain Identification | : : Process
Knowledge B e o R R Flow
Object Modeling o o —
Model
Uses

The process applied to develop elevator control system is based on FORM
method, but it is slightly modified fitting into our development culture and domain
characteristics. Elevator control system is a rather special than general application

Elevator software development process

because it is embedded, hard real-time system and has quite complicated decision-
making logic. On the other hand, the original FORM had been applied to rather normal
applications such as electronic bulletin board, so modification and extension to the
FORM were necessary.

First of all, the entire development process is divided into three major flows -
domain modeling, object modeling, and application engineering. Since the elevator
control system has been decided to be object-oriented which is more efficient to develop
complicated systems, object development process should be added. That is, reusable
components mentioned in FORM are objects in this process.

Domain modeling

Figure 3. Context Diagram. begins with context analysis.

Context analysis specifies
development requirements.
That is, by defining external
objects which communicate

Maintenance | OPeration Car Contral | External with the target system, we
p Infc i ices
Device Motr nformat Devices come to know what should
pee
CF"“‘“"\ Control be developed, what should
ommand Command . .
Elevator be interfaced, and also which
Door Stas_—% conwrol Syt constraints the system has.
) \ Shaft F'lgure 3 shows the context
Door Poor Commazid G diagram for elevator control
Hall system. We should get the
Car Call " Indication .
& Control Car Hall Call rough picture about the
Information Indication .
\ operation of the system from
Car Hall the context diagram and it

Controll Controller - ;
ontroller ontroller will be wused as base

knowledge for feature
modeling and the message
sequence diagram.

The next step is feature analysis and modeling. It is the same as the feature
modeling in FORM described in previous chapter. Simply speaking, the developers
identify the features of the analyzing domain in four categories and make relations
among them. The simplified elevator control system feature model is shown in Figure 4.
As we can see in Figure 4, Capability features are services or operations the system
provides. Operating Environment features are the hardware and the software on which
the system operates. Domain technology features are unique technologies that are
usually used only in that domain. And Implementation technique features are general-
purpose techniques used to develop the system.

The major contribution of feature modeling is to identify the mandatory and
alternative/optional features so that we can have a system model which can be changed.
Mandatory feature should be included in every system in the domain. If two children
features are Alternatives, then only one of them must be included in a system. If a
feature is Optional, then including that feature depends on user's requirements and
omitting this feature does not affect the basic system functions. As we can see in figure
4, the entire structure of the elevator control system is shown in a feature model. In the
feature selection phase, which is the first phase of the application engineering, the user

67

68

Choi, Jang, Kim, Kang, Roh, Kim, LGIS, S.Korea

will select desired features among the features defined as optional or alternatives. Then

the tool will

validate whether the selection is valid. In addition to, feature selection

apparently shows which part of the system can be re-used and which part of the system
should be newly added.

Figure 4. Elevator Control System Feature Model

Capablhty E/L Controt System
’Speed i Regulations H Cage Capacity [Purpose
Ope:;ﬂ:i:iodc I Call Handling [l[ndlcauon Handling lDoor Handling ” Motor Handling H Safety Check l Freight Elevator “ Office Building Elevator [
PEION
PG N
o 1 o
Pad ! Q
Virtual Call
Car Call Handling [:{lled(l?:\l; Handling ! Start Control ‘ Driving Control l Stop Control Wclght l Call Pass ‘
Hall Call Hall Cali
Registration Cancellation
Ope.ratmg CPU Weight Position
Environment e Sensor Sensor
. - g |
’ 32bit MPU [] 16bit MPU ! Digital Weight | | Analog Welsht Communication Absolute | [SlowDown! | pimit
Sensor Sensor Interface Position Switch Switch
..... \ ; e
P Y £ Sosssne T = B v T
T) Tl Maintenance Hall } Car] Group Controller l Monitoring i Motor l
Interfz
I Nuclues l l VxWorks] | Tornado] Tool Interface Interface Interface Interface fertace
\ N
Domain Technology / \
Starting Control Driving Control Stop Control Weight Direction
Methods Methods Methods Compensation Determination
Method Method
Position
Calculation
Method i
Express Driving Low Speed Rope Stretches Al;“ om:%uc D!forch
Control Driving Control Compensation irection irection
Determination Determination
Current Position Next Prfsc.ed)ng
Calculation Position
Calculation
b4
Implementation Technique N
S Integral Normat
Filtering Method Calculus Velocity Pattern
Event Table Look-up Bit Search
Handling Method Manipulation Method
Method Method P oy
- - ') Seel
* Prority Sequential Binary Depth First
Shared Memory Determination Search Search Search
Communication Method Method Method Method
Method

Elevator software development process

The next phase is operational modeling. Since the elevator system has a lot of
decision-making logic for the operation modes, the internal behaviors should be
analyzed in the model. But in the feature model that is merely a static view of the
system, the dynamic aspects can only be described in textual format. So we adopted
message-sequence diagram, statechart, and data-flow diagram from the conventional
software engineering to show those dynamic characteristics that input and output
produced from the functions and how related with each other. MSD and DFD are
generally well known so not presented here, but we briefly introduce statecharts since it
is useful to describe dynamic behaviors. [4]

The statecharts show the behavioral aspects of the system. It can express
sequential and parallel behaviors at the same time so that the simulation can be done
correctly. The elevator system has many operational modes that need to check very
complicated critical conditions to transform one mode to another. The complicated
decision making logic has been expressed in ladder chart which is usually very hard to
understand unless people has a lot of discipline. Using statecharts, mode transformation
can be presented in much more understandable form as shown in figure 5

Figure 5. Statechart

Call Button
Disabled

2

/‘?c LLIN—— \
F-y

Notjreair]
Y

{repair]

Notjrepair]

Notjhejght}
y

[height

Floor Height

¥

Measuring M
Wht[height)

/ bc {LowSpd)

cight Sensol
Disabled

Not{WeightSenEn|

Weight Senso
Enabled

Not[LqwSpd)
h

{Low$;

] NotfLowSpd]

o fbnormal] AbnormalModc\

.\‘

Posi Sensor
Disabled

Not[PosSenEn)

Posi Sensor
Enabled

d Aulo

auto}

{DirLampEn]
Dircction Indi "1 Direction Indi
Disabled Enabled

{FirLampEn]

Not[DirLampEn]
Floor Indi Floor Indi
Disabled Enabled

Not{FirLampEn|

Door Close

&

Clase Req.

Reg.
Open Req m{er{DoorOpen). 3)

Over-Weight

A

Door Open

Door Bution
Disabled

D
{

Not {DoorB:

Door Button
Enabled

The first phase of object modeling is candidate object identification. It
usually goes with operational modeling at the same time. Among the feature layers,
operating environment, domain technology and implementation technique features are
easy to be changed due to user’s new requirements or the technology evolution. These
features can generally be identified as objects. And by separating those as objects, when
the change is needed for new requirements or new technology, the system maintains
easily by modifying appropriate objects or just adding new objects. After the object
identification is done, defining those objects is the next process. It means to define
interfaces of methods that the object has. Once object definition is done, this definition
is used to write functional specifications for data flow diagram in operational modeling.

69

70 Choi, Jang, Kim, Kang, Roh, Kim, LGIS, S.Korea

Architecture modeling is the next. It is the same as the reference architecture
modeling in FORM except that module modeling is replaced by object modeling
process that actually started before the architecture modeling in a new process. Simply
speaking, architecture modeling in domain engineering results to the physical
subsystems and processes. Feature model and operational model can be called ‘logical
model’ and then the architecture model is to practically locate that logical model into
the physical model. According to the information and results from the previous steps,
developers decide how to organize the system to be made. This architecture model is
related to objects through the object interface, so to implement each object according to
its interface should be done also. It is the object implementation process.

After completion of these two processes, a domain analysis model which
includes all characteristics of various systems existed in a domain is done and it is a
reusable library for producing practical application software. So we need to follow the
application engineering process to produce the actual system software. It is producing a
platform—dependent system automatically from the reusable library. The first step is
feature selection phase. According to user’s requirements, appropriate features are
selected and refined. Then a model that is going to be made from the selected features is
analyzed and simulated. Since the elevator system carries people, safety should be the
critical factor. The simulation analysis validates the selected software system in terms of
functional and behavioral aspects using visual simulation tools. If simulation is
successfully finished, then the application software is produced using automatic code
generator. Since we have built the reusable object library, and functional and behavioral
models, the most of the codes can be generated automatically. Only the small amount of
codes should be added for some details and then, we can obtain reliable software
components. Figure 6 shows the meta model for the elevator software development. The
overall development process can be represented in this meta model, too.

Figure 6. Meta Model

Domain Domain Domain Application
Analysis Operational Architectural) Software
Model Model Model

Context Subsystemé
Model [Sequence Model]

Application

Data Flow

Model Diagram

Candidate |3 3
Definition §

Objects |

Elevator software development process

4. CASE Tools in the development process

Successful software engineering needs convenient environment as well as
organizational support. Especially, to establish the automated development environment
can greatly improve possibility of success since software engineering usually requires a
lot of labor work. Also, models produced should be evaluated and validated before
proceeding to the next step. So the necessity of proper tools is clearly inevitable. So we
come up with developing new tools for the new method and the result was very
successful.

As the most of other CASE tools do, our tool provides all necessary model
drawing facilities such as feature model diagram, MSD, DFD, statechart, subsystem
model diagram and process model diagram, and supports automatic data transformation
and transfer between models according to the meta model. Also, it provides feature
model validation, operational model simulation, as well as target model simulation. For
the elevator control system, we produced a feature model with over 400 features, many
statecharts, DFD’s and MSD’s. So it is nearly impossible to evaluate and validate all
those feature relationships and statechart transitions manually, and this tool does those
works correctly in short time. In addition to that, the advanced visualized simulation
tool development using 3D modeled objects is going on.

Automatic code generator generates the codes not in fixed language, but in
canonical form that means the codes generated from the auto code generator can be
used in any platform. Only thing needed is a proper interpreter between canonical
language and target language.

Figure 7. CASE Tool Screen

Domsl ‘E*W?‘\s!‘*‘;

CHE B AE i

Lookup Table®sl o]

M LES GE

MM_LAN

MMI_RS232

MR

iNPLEX TN ER Ly
e = [CEEEEE g HO A

One 2 BoneS&EA

Openbi2H 23 open

0penBTH BN 2%t open [emgczrwy) [orRE ages)

Openi 0] B4
oSt - / !
: igz:g:‘f : Rk [Lookup Table®2
Paking2TRE :

Pasi_1 BHA
- dposi_2BHA lndexﬁll%"i‘\{Bit o, B‘ﬂe@?ﬂ%’ﬁ‘#}
“&Posi_Photo

posi DRI

IRE Pulse X B4

ZRAM SUM

ZREBOOTING i)) :
I o

71

72 Choi, Jang, Kim, Kang, Roh, Kim, LGIS, S.Korea

5. Conclusion

In the paper, the new software development process is successfully applied to
the elevator control system development. First of all, the new process really extends the
reusability range into the requirement specification phase. Feature model is used to
describe complicated elevator control system along with dynamic models such as
statechart, so the entire elevator control system is now in much more understandable
form. Systematic relationships and data transformation among the models makes the
entire process quite automatic and as a result, application development from user’s
feature selection to the final product can be done faster, easier and more reliable while
saving time and labor.

CASE tools do the most of works needed to develop a system. Especially
validation of models and simulation of the selected systems can greatly reduces the
logical error before the actual codes generated. CASE tools are programmed in JAVA
language which can run the application in any platform, so we could almost achieve the
platform-free tool that produces platform-free codes.

6. References

[1] Kyo C. Kang, Sajoong Kim, (1998) Annals of Software Engineering Vol.5,
“FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures”, Virginia Tech, VA

[2] Mari Natori, Akira Kagaya, Shinichi Honiden, (1996) Software Reuse, “Reuse of
Design Processes Based on Domain Analysis”, IEEE, California, pp.31-40

[3] Kyo C. Kang, (1993) Proceedings of JCSE ’93, “Feature-Oriented Domain
Analysis for Software Reuse”, pp. 389-395

[4] Gomma, Hassan, (1993) Software Design Methods for Concurrent and Real-Time
Systems, Addison Wesley, MA

[5] Martin, Robert C. (1995) Designing Object-Oriented C++ Applications Using the
Booch Method, Prentice Hall, NJ

[6] Marilyn Keller, Ken Shumate, (1992) Software Specification and Design A
Disciplined Approach for Real-Time Systems, John Wiley & Sons, NY

7. Authors’ Biography

Byung Wook Choi received his Ph.D from KAIST in Seoul, Korea, in 1992. From 1992,
Dr. Choi joined LG Industrial Systems Co. Ltd., where he is currently working as a
senior engineer in Core Technology Laboratory. His current research interests include
real-time systems, embedded systems programming, and software engineering.

Chang Hee Kim received B.A. in Computer Science from New York University(NY) in
1994 and got M.S. in Computer Science from Columbia University(NY) in 1996. He

Elevator software development process

joined LG Industrial Systems Co. Ltd. in 1996 and has been working on software
engineering for Core Technology Laboratory.

Ki Byung Jang received M.S. in Electrical Engineering from Inha University in 1990.
He joined LG Industrial Systems in 1990 and has been working on Software
Engineering for Core Technology Laboratory. His current research interests are object-
oriented design of embedded system, formalism for real-time simulation.

Kyo-Chul Kang received his Ph.D. from the University of Michigan in 1982. Since then
he was worked as a visiting professor at the University of Michigan, a member of
technical staff at Bell Communications Research and AT&T Bell Laboratories, and a
senior member at the Software Engineering Institute, Carnegie Mellon University. He is
currently a professor at the Pohang University of Science and Technology. His areas of
research interest include requirements engineering, real-time systems development, and
software reuse.

Seng Jin Roh was graduated from Kyung Hee University in Seoul, Korea in 1986. He
joined LG Industrial Systems Co. Ltd. and has been working on elevator control
systems as a senior engineer.

73

