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ABSTRACT

During Elevcon’96 held in Barcelona, a paper on the 1-dimensional aerodynamic model
for super-high-speed elevator design was presented. That paper addressed the "weak
shock” produced when the car was accelerating and that was the source of excessive
vibration. In this paper, the unsteady 2-dimensional turbulence flow in the hoistway
with anr upward accelerating car is simulated by solving the time-dependent Navier-
Stokes (N-S) equations with a corresponding turbulence model. Since the flow is very
complicated due to unsteadiness, compressibility and strong turbulence, the numerical
scheme must be highly efficient. Therefore, a new "multi-grid" method is adopted. The
results of simulating three kinds of car shape, namely flat top, conical top and spherical
top, show that this method has been very effective in solving such a complicated
problem.

1 INTRODUCTION

As the cities are becoming more and more densely populated, buildings are getting
higher and higher. The proposal of "kilometer-high building" was announced decades
ago. Therefore, the demand for better services in vertical transportation within buildings
i1s rapidly increasing because citizens live and work in higher and higher buildings. The
highest building in the world is now slightly over 100 storeys but the concept of
’kilometer high’ building has been under active considz:ation. In accordance with
Fortune 2], the key to efficient, mega high-rise elevator design is to stack local zones
served by their own local elevators on top of one another. These local zones are then
served by very high-speed, sky-lobby shuttle elevators, serving express between the
ground terminal floor(s) and the sky lobby(ies). With a view to this approach, the speed
of elevators in the future will continuously be increasing. The rated speed record of 600
m/min was achieved in 1977 in Tokyo and then 750 m/min in 1993 in Yokohama.
Now, elevators up to 840 m/min are being developed. It is not so difficult to increase
the rated speed of drive motors or the gear ratio to achieve a higher rated speed for
elevators. However, super-high-speed elevators suffer from two major mechanical
problems, namely excessive vibration and aerodynamic noise.

The first problem is associated with the increasing drag force exerted by the high-speed
air movement around an ascending or descending elevator car. These problems, which
are generated from the aerodynamics of the system, hinder the development of higher
speed elevators and they must be solved in order to make the vertical transportation keep




130 H.W.Yang, A.T.P.So, T.T.Chow & K.C.Lam, China and Hong Kong

abreast with the construction of super-high-rise buildings in the next century. Human
response is greatest at low frequencies and therefore, vibration limits in the range from
1 Hz to 80 Hz must be met. In accordance with CIBSE Guide D, in-car noise levels,
machine room noise levels and lobby noise levels must be under control. The basic
solution to these problems is to reduce the noise generated by a moving car. It is
therefore a necessity to make a revolution on the external structure of elevator cars so
as to keep the noise levels, vibration levels and drag force to a minimum subject to a
limited size of hoistway. The initial step is to produce a comprehensive, realistic and
reasonably accurate mechanical model of a super-high-speed elevator car inside a
conventional hoistway so that the aerodynamic properties can be studied thoroughly. A
1-dimensional initial study was carried out [1].

2 A REVIEW ON THE 1-DIMENSIONAL MODEL

A one-dimensional model was initially used to study the air flow pattern inside the
hoistway. Lots of assumptions were made so that this model is very much different
from the real situation but this model can give us an insight into the changing patterns
of air flow when the elevator car is accelerating. The assumptions made are shown
below:

a) An up-travelling car is simulated;

b) The leakage of air downwards around the car is neglected;

c) The gravity of air is neglected and hence the potential energy of air;
d) The leakage of air through landing doors is neglected;

e) The irregular shape of car and hoistway is not taken into account of.

The typical aerodynamic characteristics, i.e. pressure distributions, is revealed when the
speed and acceleration are high. A linear hoistway is assumed where x represents the
linear space above an upward accelerating car. The simplified mathematical model
adopted is the 1-dimensional inviscid flow model and the governed equations are as
follows:
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Here, p is the density of air, being assumed as constant throughout the simulation; V is
the instantaneous velocity of air at level x; p is the instantaneous pressure at level x; e
is the specific internal energy of ideal gas defined below by equation (4). These three
equations are the conservation forms of the continuity, x-momentum and energy
equations respectively.
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Here, y is the specific heat ratio. With the aid of equation (4), it can be noticed that
equations (1) to (3) contain three dependent variables, namely V, p and p.

3 INTRODUCTION TO THE MULTI-GRID METHOD

The flow in the hoistway with an accelerating or decelerating car 1s very complicated
and unsteady due to the compressibility and strong turbulenubility of air. The
calculation domains always change with the moving car. In this way, the calculation
grid must be rebuilt with time during the whole simulation process. The air is strongly
compressible, especially when the car moves near the bottom or the top of the hoistway,
resulting in the production of some kinds of compress waves. The flow is highly
turbulent so that the flow and the side of the lift car must be carefully handled.

There are many kinds of different schemes, numerical models and commercially
available software packages for computational fluid dynamics (CFD) and all these can,
in a certain way, assist us to solve our problem. MacCormack explicit algorithm [3,4]
is one of the widely used methods for calculating flow with compressible turbulence and
this algorithm has many advantages such as the convenience in vectoring, programming,
understanding, wide compatibility and low memory requirement. Multi-grid [5,6]
technique is a numerical scheme that has the ability to increase the convergence speed
for the calculation. Some research results indicate that the convergence speed for the
MacCormack explicit algorithm can increase 2.1 times by using the multi-grid technique.

The multi-grid method was first introduced in 1961 for solving Poisson equation by
Fedorenko and then Backvalov discussed the variable-coefficient boundary value
problem in 1969. Wi [7] introduced a multi-grid acceleration scheme with one-step Las-
Wendroff algorithm and applied it to the solution of homoenthalpic Euler equations.
Johnson extended this technique to the more general case of two-step MacCormack
explicit algorithm to solve 2-D Euler equations by a finite-volume method.

The characteristic feature of multi-grid method is the combination of the fine-grid
smoothing and the coarse-grid correcting steps. During the calculation in the fine grid,
the defect, i.e. residuum, is not necessarily reduced but "smoothed"”. By following the
correction step, the discrete solution is improved by means of an auxiliary equation in
a coarser grid. The result is a very fast and effective iterative process. This paper deals
with the development of an efficient explicit multi-grid algorithm for multi-dimensional
unsteady compressible turbulence flow. This multi-grid algorithm is based on Ni’s and
Johnson’s approaches on the macCormack fine-difference scheme and the estimation of
the Jacobian matrices is not required. The flows in the hoistway with three kinds of
external shape of an elevator car are studied. For convenience, the 3-D governing
equations are prepared but the solution is based on a 2-D simulation so that the same set
of equations can be used again in future for a full 3-D study.
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4 GOVERNING EQUATIONS
The 3-D Reynolds-Averaged N-S equations, with Boussinesq eddy-viscosity formulation,
are written in full form and transformed from the Cartesian co-ordinate system (x, Y, Z)

into the Arbitrary co-ordinate system (€, n, ), as shown below:
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andk, I, m=1, 2, 3. J=det (3" / &x") is the Jacobian Matrix. The terms of the stress
and heat flux are given in the non-dimensional forms as shown below:

A
i

i j k
(pw,)[(@;*@zﬁ)-zb _a_u_}

ax/ oxt 30 gk 0]
Q' = ..._El.. + ...Ef-. 1 _Q.I.I_
‘ Pro Pr, ) y+1 gt

Here, p is the viscosity and is given by Sutherland equation (non-dimensional form):
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K, is the eddy viscosity and is given by Baldwin-Lomax turbulence model. The non-
dimensional forms in the arbitrary coordinate system is shown below:

Be = B YSY 5 By = Bosr Y > Ve ()

where y 1s the normal distance of the car from the wall and y, can be decided by
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(MY imer = [HYlower In the inner regions of the boundary layer, the following

equation applies:
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where 1 is the mixing length as shown below:
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The corresponding formula for the outer region is shown below:
( B, )outer = K Ccp Fwake Fldzb (y) P
where K, C, , are constants
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Ymax and F_, are determined by the maximum of the following equation:
.
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Fi 1s the Klebanoff intermittence factor given by the following equation:
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5 THE MULTI-GRID ALGORITHM
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The author made use of the algorithm in other areas of application and those who are

interested in them may refer to the two publications [8,9].

5.1  Fine-Grid Algorithm

On the fine gnid, the explicit MacCormack algoritflm 1s used in its unsplit form.
MacCormack algorithm is a popular member within the class of Lax-Wendroff two-step
schemes. It is given below in its forward-predictor-backward-corrector form;

Current solution is stored in array: A Q, ik

(14)
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Artificial dissipation is given by the following equation:
1 n+l 1
Q"™ = Qi + Dy, a7
Residuals in the array are collected in the following way:
nel n+1 n 18
A Qux = Qur - Qs (1%)

Although the treatment shown above requires extra computational loading, a better
accuracy and convergence can be obtained for the solution.

5.2 Artificial Dissipation

Terms of artificial dissipation consisting of second and forth differences are added to
prevent odd-even point decoupling and to allow compress wave in the flow capturing
respectively, especially for Euler solver. But for viscous flows, it is also necessary to
use artificial dissipation for good convergence rate. There are many forms of artificial
dissipative terms but they can be divided into two conceptually different models. The
first model has been made popular by Jameson and Chima. The second model is the
physically based dissipation developed by Dulibravich recently. In this paper, the
dissipative model based on Jameson is used. The dissipative term, D, is given by:

D = (Dg+D, +D.)Q (19

where D, , D“ » D, are dissipative operators in directions of £ , n ,

In the £ direction, the operator is given by:
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Here, k® and k* are user-specified coefficients and the values are k@ = 1/4 and k@ =
17256 in this project. y;;, represents an artificial dissipation sensor shown below:
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As a matter of fact, p;;, can be replaced by pressure Pi;x as they are proportional to one
another. In the smooth regions of flow, the dissipative terms are within the truncation
error of the MacCormack algorithm and therefore they will not affect the accuracy of
the fine-grid scheme. Second-order dissipation is usually added to prevent pro-compress
wave oscillations. At places near to the existence of shock or compress wave, Yijx 18
large and the second order difference dissipation becomes first order locally. The 2nd
order dissipation coefficient is written in terms of density for computational efficiency.

5.3  Coarse-Grid Algorithm

Given the change in the fine-grid solution computed by one iteration of MacCormack
algorithm, successively coarser grids are used to extend the change throughout the whole
system. The coarse-grid propagation scheme used here is essentially the second half of
one-step Lax-Wendroff scheme developed by Ni for two dimensional Euler equations.
The first step of Ni’s scheme computes changes at a grid point, and the second step
distributes those changes to surrounding points. Johnson showed that the first step of
Ni’s scheme might be replaced by a variety of Lax-Wendroff schemes, including
MacCormack’s scheme. Furthermore, Johnson demonstrated that dissipative effects had
a local character in viscous flows. Therefore, the so-called "Convective Coarse-Grid
Acceleration Scheme" used here is solely on the Euler equations. The coarse-grid
scheme is entirely independent of the viscous terms retained, the turbulence model used,
or any artificial dissipation added to the fine grid. But Johnson’s coarse-grid scheme
need the calculation of Jacobian matrix which is time and memory consuming for 3-D
simulation. In order to overcome such shortcomings, a coarse grid scheme based on
Taylor series is used. Given a fine-grid solution, Q, ;x and a fine grid change as shown
in equation (18), the coarse-grid change can be estimated by using a Talor series:

AQ:;',f = AQy + At (AQ7), + 0 (a1
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By using the Johnson’s "Convective Coarse-Grid Acceleration Scheme", equation (22)
can be implemented on a coarse grid as shown below:
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The fine-grid MacCormack scheme is used to advance the solution by one time step,

- giving Q™" and AQ™"' for each grid point. By choosing a suitable value of h for a
coarse grid, equation (23) can be used to determine AQ™? at the coarse-grid points. On
the boundaries, AQ™" is taken to be zero. Values of AQ™ at intermediate fine-grid
points are estimated by bilinear interpolation and the fine grid is updated using;

A Q n=2 Q nsl A Q n+2 (24)

The process can be repeated by advancing from the fine grid to the coarse grid with each
iteration. Since the right hand side of equation (23) only depends on fine-grid changes,
the coarse grid scheme cannot affect the convergence of the solution. Hence, this multi-
grid scheme retains fine-grid accuracy. Similarly, all physical viscous dissipation terms
may be neglected on the coarse-grid without affecting a viscous solution on the fine grid.
The number of points of a fine grid is expressible as (n-1)2""+1 for integers p and n
while p is the number of grid crossings and n is the number of intervals on the coarse

grid.
6  THE COMPUTER SIMULATION

The 2-D flows are calculated by a 3-level V-cycle, or sawtooth cycle, multi-grid
sequencing as shown in Fig. 1. The region under calculation, which is a cylindrical car
accelerating inside a cylindrical hoistway, is shown in Fi g. 2. Three kinds of car shape
are simulated. The maximum speed of the car is 25 m/s. The first one is a flat top
design, which is the conventional design, shown in Fig. 3. The second one is a conical
top design, shown in Fig. 4 while the third one is a spherical top design, shown in Fig.
5.

From Fig. 3, 4 and 5, we are able to see the velocity field around the elfevator car. Both
the flat top and conical top design have sudden change in the velocity fields at the top
and bottom corners of the elevator car. However, there is no sudden change in velocity
field at the upper comer of the car with spherical top design. The authors believer that
2 sudden change in the velocity field is the major source of excessive noise and
vibration. Fig. 6 shows the distribution of air pressure on the car side, at time t = 11
s after the commencement of movement. It can be seen that the spherical top design has
got the lowest pressure distribution, perhaps due to the stream-line external appearance.
Fig. 7 shows the pressure distribution along the center-line of the hoistway from the car
top towards the roof at time t = 11 s. It can also be seen that the spherical top design
gives the best pressure distribution inside the hoistway. We shall ther have reasons to
believe that the spherical top design will experience the least noise and vibration
problems as compared with the conventional design of flat top. All calculations are

provided with an initial speed of zero and all cars start to accelerate from the bottom
floor.

7 CONCLUSIONS
The background of the research project has been highlighted has been highlighted. As

buildings are getting higher and higher, elevators of higher speed will become
mandatory. However, super-high-speed elevators face problems such as excessive
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vibration and noise. Therefore, special design of the car structure is necessary. The 1-D
flow analysis was carried out and published. In this paper; a 2-D model has been
developed, including the display of pressure distribution under three kinds of elevator
car and also the simulation of leakage of air flow around the elevator car. The multi-
grid algorithm, with fine and coarse alternation, has been employed to arrive at the
solution and the governing equations are included in this paper. Three kinds of shape
for the exterior of an elevator car have been simulated and it has been found that the
parabolic top design gives the best performance, which is in line with our common
sense. From Fig. 5, we can still find an abrupt change in velocity field towards the
bottom corner of the car. That implies not just the top of the car needs specific design
but also the bottom as well.

Irregular shapes of both the hoistway and the elevator car will be taken into account of
in the future so that a true 3-dimensional modelling can be carried out. It is hoped that
some sort of irregular shapes for the car design will give even more superior
performance, which may go against our common sense. In that case, only a
comprehensive computational fluid dynamical simulation can really suggest the optimal
car shape design for our future to provide elevator services for ultra-high-rise buildings
of, say 150 storeys or more. Experimental approach using PIV will be the final step to
verify the design results generated from this CFD approach.
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