A COMPREHENSIVE SOLUTION TO COMPUTER VISION BASED
GROUP SUPERVISORY CONTROL

Albert T.P. So, W.L. Chan, City Polytechnic of Hong Kong
H.S. Kuok, S.K. Liu, Chevalier (HK) Ltd.

ABSTRACT

A paper presented at ELEVCON’92 entitled "A Computer Vision Based Group
Supervisory Control System" suggested that the application of computer vision improve
both the quantity and quality of service of conventional group supervisory control
systems. However, such fuzzy logic based primitive design limited the positioning of
the cameras due to the nature of the image interpretation algorithm. For economic
reasons, it has been suggested that security cameras installed at the corners of lift
lobbies should be used. Therefore, two new methods, based on "Algebraic
Reconstruction Technique" and "Depth From Motion", have been developed and
presented in this paper, that can upgrade the capability of the existing system to
estimate the number of passengers in the lobbies more accurately.

1. REVIEW OF THE EXISTING COMPUTER VISION BASED
SUPERVISORY CONTROL

It has been suggested [1] that perfect control can be achieved if the group supervisory
control of a lift system can actually know every detail of the traffic flow. The
information includes the number of passengers waiting at the lobby, their destinations
as well as the number of passengers inside each lift car. The solution to the second
item, i.e. passenger’s destinations, has been suggested by the ACA’s optimal computer
group control [2] while the first and third items are handled by computer vision [1] and
other less precise but perhaps faster and inexpensive methods [3-4]. By employing
computer vision, it is possible to estimate the exact number of passengers inside a lift
car as well as waiting at the lift lobbies under a real-time basis.

1.1  Imperfections in conventional group control

The conventional car allocation algorithm has a lot of imperfections. It only considers
two aspects, namely the distance between the current position of a lift car and the
landing call demand floor and the number of foreseeable stoppages when the lift car
travels from the current floor to the landing call demand floor. Certain factors have
not been considered, including the number of passengers initiating such a landing call,
the ratio of up-direction and down-direction passengers, the spare capacity inside the
lift car and the space/weight ratio of passengers inside the lift car etc. All these factors
seriously affect the efficiency of car allocation procedures in various ways.

1.2  Improvements by computer vision
The following improvements can be achieved if the number of passengers are known
at appropriate locations.

a) Landing calls initiated by a large group of passengers can be given priority
automatically. ,
b) Any floor occupied by a large group of passengers can be assigned as a

preferential floor or heavy demand floor automatically.
c) A lift car with over 90% load can serve one Oor two more passengers.
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d) Any landing floor with landing button on but without any passenger can be
ignored automatically.

e) Holding time for car doors becomes unnecessary.

1) Up-direction passengers and down-direction passengers can be discriminated
automatically.

g) Up-peak and down-peak control modes can be switched in and out
automatically.

h) Other minor improvements such as defeating the anti-nuisance function when a

single child of light weight is inside the lift car.

1.3  Imperfection with the existing computer vision based supervisory control
system

The existing fuzzy logic based passenger number estimation algorithm [1] restricts the
location of the camera. It should always be placed right up in the ceiling of the lift car
or the landing floor so that the top view of the whole area of interest is covered. Only
by this arrangement that the passengers appear as individual patches on the image
where, most importantly, the area of the patch has a direct relationship with the number
of passengers corresponding to the patch. This approach is reasonably satisfactory for
applications in the lift cars but certainly there are problems when it is used for the lift
lobbies. First of all, the common ceiling height of most lift lobbies is no higher than
four to five metres and thus a standard optical lens cannot cover the whole lobby unless
a wide-angle lens is employed but it will heavily distort the images. Secondly, it is
expensive for both installation and maintenance if the camera is to be located at the
middle of the ceiling. Also, for economic reasons, the security cameras located at the
corners should be used instead. In this case, the existing fuzzy logic based passenger
number estimation algorithm cannot be applicable anymore since the area of the patch
is no longer proportional to the number of passengers belonging to the patch. Two new
approaches are suggested here.

2. THE "ALGEBRAIC RECONSTRUCTION TECHNIQUE" APPROACH
(ART)

The basic idea of this method comes from the operating principle of a piece of standard
medical imaging equipment, namely X-ray Computer Tomography, or CT-scanner.
The main application of CT-scanners is the diagnosis of abnormalities within the skull.
Head scanning is used to detect causes of neurological disorders such as brain
neoplasms, infarctions, cerebral edema, abscesses and ophthalmologic diseases etc. The
idea of CT comes from the need for a technique aimed at computing true sectional
views from projection data. Reconstruction of an object from its projections is a
problem of linear algebra that can be solved in a straightforward manner by matrix
inversion. For our application, two to three cameras are installed at the corners and
they are focused towards the lobby. Each camera produces an image of the lobby as
viewed form its direction of focus. Image subtraction between the real time image
obtained and a stored reference image of the vacant lobby results in patches of
passengers. Each patch may belong to a few passengers when they are overlapping one
another as viewed from the camera. Our job is to reconstruct the distribution of
passengers in the lobby by combining the two to three images associated with the
respective cameras so that the number of passengers in the lobby can be estimated.
Before we look at the system, it is preferable to have a brief understanding of the ART
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algorithm.

2.1  Principle of ART [5]

There are basically two approaches, namely the iterative approaches and the direct
reconstruction method which involves the complicated Fourier Transform. Although
the modern CT-scanners are employing the direct approach, we are adopting the
iterative approach due to its simplicity and light computational burden.  The
mathematics involved is a relatively old, but seldomly used, field of study involving the
reconstruction of a two-dimensional distribution from its projections. The most
straightforward, although computationally inefficient solution involves linear algebra.
The two-dimensional image is reconstructed using a matrix inversion of the projection
data. For images of reasonable complexity, the attempt is to find a two-dimensional
distribution that matches all of the projections. An initial distribution is assumed and
it is compared with the measured projections. Using one of a variety of iterative
algorithms, the initial distribution is successively modified. Reference is made to Fig.
1 where one line is highlighted.
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where
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Here, f; represents an element along the jth line forming the projection ray g;. This

difference is then evenly divided among the N reconstruction elements. The iterative
algorithm is defined as
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where the superscript q indicates the current number of iteration step. The algorithm
recursively relates the values of the elements to those of the previous iteration. A
number of variations on this general theme have been proposed. One nonlinear
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formulation makes use of the known non-negativity of the density values f;. Thus,
where f; < 0, it is set equal to zero. Another variation is known as multiplicative
ART, as compared to the previous original algorithm, which is additive ART. In the
multiplicative version, the original density values are multiplied by the ratio of the
measured line integral g; to the calculated sum of the reconstructed elements. This is
given by

gj q

q+1 = P
U R @
q

In multiplicative ART, each reconstructed element is changed in proportion to its
magnitude. This is in sharp contrast to additive ART, where each element in the ray
is changed a fixed amount, independent of its magnitude.

2.2 Application of ART in computer vision based supervisory control
For illustrative purpose, two cameras (A and B) are installed at the corners of the
lobby, as shown in Fig. 2. The lift lobby under interest is enclosed by the small square
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cameras, occupying Zone
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is also an individual object occupying zone A, but only half of it occupies zone B, and
the remaining half occupies zone Bs. In this way, overlapping of passengers may lead
to false information to one camera but this situation can be partly compensated by
another camera, thus minimising the total error obtained. Image subtraction between
a real-time image and a reference image for the vacant lobby can extract all passengers
in the form of patches. Experience has revealed that a non-reflective interior surface
design for the lobby installed with highly directional artificial lighting can give the best
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for patch enhancement. For each image, we therefore have six vertical white columns
superimposed by black patches. A degree of occupancy, p, of each column, in terms
of percentage of patches in the associated column, is calculated. The area of patches
or the length of patches can be used for identifying this degree of occupancy. Since a
passenger may appear as a small patch if he/she is standing at a remote end from the
camera, correction with respect to distance from camera is carried out. Each column
can further be divided into sub-zones. The degree of occupancy of each sub-zone is
corrected in accordance with the physical distance of the real scene of the sub-zone
from the camera and the degree of occupancy of the whole column is the addition of
all the degrees of all the sub-zones. After image grabbing, image subtraction,
thresholding and distance correction, u(A,) for k = 1,..,6 and u(B,) fork = 1,..,6) are
known. By AST, u(AB)) for i,j e {1,2,..,6} can be estimated. The meaning of x(A;B)
is actually the degree of occupancy of the zone in the lobby generated by the
intersection of zone A; and B;. For example, Passenger P1 is in fact occupying the
intersection zone of zone A, and B;. We shall expect a high value for x(A,B;) whereas
u(A,B;s) should have a value approaching zero. Integrating all the u’s over the whole
lift lobby and multiplying the resultant value by the maximum number of passengers
allowed for the whole lobby, we can get the real-time number of passengers at the
lobby. Also, by checking the distribution of degree of occupancy over the lobby, it is
possible to tell where are the passengers grouped together.

2.3  Comments on the AST approach

This method is a fast and reasonably accurate method of estimating the number of
passengers at the lift lobby. Iteration only takes seconds to complete and only one
image from each camera is deemed sufficient to generate the result. Time multiplexing
can conveniently be implemented so that one image grabber card is adequate to be
interfaced to tenths of optical cameras. However, errors caused by overlapping of
passengers on 2-dimensional images still exist although the installation of more cameras
can reduce such error. It is professionally felt that three cameras for each lift lobby is
an optimal arrangement.

3. THE "OPTICAL FLOW" APPROACH

In order to overcome the problem of overlapping, a "field of depth" of the lobby scene
is to be generated. Provided such field is compiled, two passengers can be
discriminated between one another even though one forms an obstacle to the other along
the line of sight of the camera. This is in fact in line with human reasoning. Two
cameras are required, place side by side as if human eyes do. They are first of all well
calibrated and two images of the same scene are grabbed. Correspondence between
pixels is achieved by generating a velocity profile. Once correspondence is set up, the
depth of the scene point associated with the particular pixel can be found. Clustering
all the scene points can indicate the number of passengers in the lift lobby.

3.1  Camera calibration

The two CCD optical cameras (a and b) forming a stereoscopic system are placed side
by side and well calibrated in accordance with Tsai’s method [6]. After the calibration,
every point in the world coordinate (x,, Y., Z,) can be transformed into the two
camera-orientated coordinate systems (X,, y,, Z,) and (X,, ¥y, Z,) and further more, the
frame memory coordinate systems (X,, Y, and (X,, Y,) respectively by the following
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where i can represent either camera (a) or camera (b). The nine r’s represent the
rotational matrix while the three T’s represent the translational matrix. f; is the focal
length; ky; and s,; are intrinsic parameters representing the distortion with the lens and
CCD array; d,; and d; are the physical separation between two neighbouring light
sensors on the CCD array. When all these are known, the two cameras have been
successfully calibrated.

3.2 Velocity field computation

Two images of the scene are taken for each camera with 6t = 0.5 second apart. A
gradient constraint equation is introduced that relates velocity of a pixel on the image,
ie. (u,,, Vi) to the image brightness function P(x,y,t). It canbe assumed that:

P(x, y, 1) = P(x+5x, y+dy, t+31)
Hence, 0 = P u +Pyv + P,
where P, = oP , P, = op ,P = opP ©)
ax 7 dy ot
ox dy
= ma . v = e
ot lx,y ot l"s)’

The gradient constraint equation has no solution by itself and therefore an error
optimisation, E, has to be used [7] such that

E? = ff{[qu+Pyv+Pt]2
SERCRCRCIE

where k controls the relative cost of deviations from smoothness and deviations from
the motion constraint and it is usually set to 1. The equation set can be solved by
discrete approximation and then numerical iteration, resulting in the following
expressions for the nth iteration.

)
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Tteration is considered a completion when | u®*P - u® | + | vOfD - v® | s
smaller than a threshold value.

3.3  Pixel correspondence

Image subtraction between a real time image and the reference vacant lobby image can
highlight the patches due to passengers. We are only interested in the edges of the
patches and thus the velocity field computation concentrates on the edge pixels only.
The job at present is to find out pixel-pairs on images from the two cameras that are
corresponding to the same spot in space. Provided that such pixel-pairs are located, the
coordinates of the scene spot in space can be calculated and hence, its distance from the
stereoscopic camera system. Each relevant pixel (X,, Y,) on the patch of an image
from camera (a) corresponds to a straight line in space passing through the focal point
of the lens. The coordinates of each point on this line in the world coordinate system
can be represented by [ Xuo(Zuo)s YwoZuwo)» Zwo 1, Which is an equation with z,, as the
running parameter:
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This line can be mapped onto the image from camera (b) by using equation set (5) to
form an epi-polar line. This epi-polar line will intersect the edges of the patches at
various points. The velocity profile at these points are checked with the velocity profile
of (X,, Y, . The pixel with a velocity vector more or less identical to that of X,, Yo)
is chosen as correspondence. With two pixels on the two images from two cameras,
it is possible to fix a point in the world coordinate system.

3.4  Scene spots fuzzy clustering

After the completion of step 3.3, we shall have a set of points in the world coordinates.
These points are marked on a horizontal plane, i.e. the z-coordinate is being ignored.
These points are actually on the external surfaces of the passengers seen by the
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cameras. The effect of fuzzy clustering [8] is to identify whether a group of points
belongs to one or more passengers. Assume that there are n number of points to be

clustered into a number of groups. The set of points is defined as
U= [x,..,x,} c &7
where x; = ( X, ¥ )T 1 coordinates of ith point
A relational matrix S, is set up below as
T i
S - | . (11

where 0 < r; < 1:1,j = 1,...,n are the degree of correlation between point i and
point j and it can be evaluated from the characteristics values by a number of ways.
In our case, since we are using the points to distinguish between passengers, the size
of a standard passenger is a natural choice of the degree of correlation. d,, the normal
diameter of a human being from a top view, which is around 0.4 m, is chosen as a
datum. Therefore, r; can be defined below as:

1 - Cd(xi,xj)

1

rij

where  d (x;,x) = |x - %|
S RS R R a2
0 ifd(x,,x)>d,
C = _3; ifd (x,, x) < d,

An equivalence relational matrix can be worked out by:

(Smm)N - Snan(Snxn)an = (S,an)N+1 = (Snxn)N+2 = .. (13)

such that the operation "o0" is defined as follows:
ROQ:[rij]O[qij] =P=[P,—]-]

= [ sup (inf(rik’qkf))]

k=1ton

14

It can be shown that any equivalence relationship matrix defines a unique partition of
a set. By c«-cutting the equivalence relational matrix, crisp clustering is achieved.
Those elements, r; = 1, imply point i and point j belong to the same group. By
checking against the size of a group, it is possible to estimate the number of passengers
seen by the two cameras.
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4. CONCLUSIONS

The existing computer vision based group supervisory control system has been briefly
reviewed. Two new approaches have been introduced in this paper. The AST
approach is fast and economical but its accuracy is not so high. The accuracy can be
improved by installing more cameras and increasing the ceiling height so that the level
of overlapping of passengers can be minimised. The "Optical Flow" approach is more
accurate but it is very computational intensive. It is based on one critical assumption
that only moving passengers can be detected. Stationery objects in the lift lobby can
not be identified since the velocity vectors of edges of these objects have very small
amplitudes. However, both methods have a common merit. They need a limited
number of cameras which have been installed at the lift lobbies for security purposes
and they need only one or two images to arrive at the solution. Hence, the hardware
cost is low in general. Further research work is deemed necessary to emulate the real
visual cognitive ability of the high-level biological visual system of human beings.
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