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THE DEVIATED BENDING
The state of stress of elevator guide rails and their elastic
deformation based on the change in the load distribution on

the car floor.
by CARLO DISTASO

Foreword

The Italian regulation related to the construction, installation
and operation of elevators prescribes that the guide rails must
support the horizontal push transmitted by the car normally hang
ing, no matter what the position of its travel is, with a load
which is the same as its capacity, evenly spread on any half of

its floor.

Within the same article the regulation provides that the elastic
deformation arrow must not be higher than seven millimeters.

As a hypothesis of constraint it provides that each part of guide
must be considered simply leaning between two consecutive anchor-
ages.

In the past, when the great majority of elevators used to be
electric traction type, the checking of the above qualifications
was done assuming simplifying hypothesis on the distribution of

the load in the car (F 1 a & b), with the conviction, affirmed but .
not proved, that to such distribution did correspond the maximum
stresses on the guide rails.

Through the coming and spreading on a large scale of hydraulic
elevators with lateral suspension, it immediately appeared evident
that the old practice of approximation was not reliable any longer.
To overcome this difficulty some solutions have been proposed which
develop to a long series of little formulas which on turn get to
some results which can easily be objected.

According to me the most correct way to behave consists of a detail
ed analysis which may branch to different analytic developments
which take into account all implications involved, but finally
synthesize into a few formulas taking to reasonably reliable
results.
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INTRODUCTION

In the majority of cases the floor of an elevator car has the
shape of a regular quadrilateral and that is the case I will
refer to.

However the criterion of calculation I propose 1is applied, with-
out significant changes, to all cases where the floor of the car
allows at least wo axis of symmetry so that the whole of the
straight lines dividing this floor into two parts equiextended
constitute a sheaf of straight lines having thair pole to coincide
with the symmetry centre.

In all other cases the methodology of investigation remains basi-
cally unchanged. Only the shape changes, which may articulate
into far more complex formulas. Given that, to semplify the calcu
lation development, it is good to make a distinction between the
thrusts due to motionless loads (car frame load, operator load
and every other accessory solid for any of such components) and
those due to the traveling loads (loads differently distributed
on one half of the car floor). The former cnes, when the system
geometry is determined, always remain unchanged and are easily
calculable. The others change according to the distribution of
the load. But because, as it was said, all the secants dividing
the floor of the car into two equal parts, pass through the sym-
metry centre, each distribution is distinguished by one parameter
only. Such a parameter may be the angle of inclination of the
secant compared with one of the axis of symmetry of the car.

For example that parallel to the plate of the guides (F 2) which
will be called «f . Then assume a reference system coinciding
with the two axis of symmetry ,X and }/ , imagine the load
distributed on the farest half from the guide plate and express
the coordinates of the barycentre according to the angle of incli
nation. |

Barycentre Co-ordinates

Divide the & wvariation ground into two intervals. The first one
changes from & = @ (secant parallel to the guide plate) to

o = é?é% %s (secant coinciding with the diagonal of the car).
The second one changes from o = dkcq %g as far as 4’:25 (secant
perpendicular to the guide plate).

By applying the usual geometry rules it is found the following:

1) For

O<o<<arctg_g_

1 Z 1
—— K'a . - K'a A
S e/ b7
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having indicated the tagol with a K.
1t is deduced that the geometric place for the barycentres 1is
expressed by the following equation

g
3 b oy, b
yg = ¥ Xj p

In particular:

For o =0 K=o ; §j<= 0 y 5? = - 2—
b . b . 2 <-4
R L R R A
2)For arctg B < ot < TU
a 2

xg= oA, s W ke
In particular:

/
b k= ko xge 42 =7
For o = drc‘l'j Y 7/ j 4 / ;J 6
- = Xge 4 ; Nz
For o =T, ke, NPT g
It is to be noted that the two arcs of parabola intersect on the
point of co-ordinates ( 2 - é_ ). This point belongs to the
second diagonal. 6/ é

The Critical Points

Figure 3 shows the normal section of a structural shape generally
used as guide rail for an elevator car. The points of the section
which are more stressed because of the parallel efforts of the
two main axis of inertia are indicated with letters A, B, C, D.
But whereas on points A and C the effects of the two stresses of
deviation are subtracted, on points D and B they are added up.
These two points will be called critical points.

Owing to the different alternate distances of the critical points
from the main axis of intertia, as well as the different values
of the thrusts, it is not possible to foresee by instinct which
~one of the two points is more stressed.

Therefore the investigation must be made on both critical points.
At a later stage it will be possible to make a comparative exam.
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Critical Point B

The area of definition of stress ©g on point B must be divided
into two intervals which are to be examined separately.

0 b
1) Interval <0(<arcfg_§_

By indicating the components of the thrust on the guides parallel

to the relevant axis of the symmetry with a X_  and a Y and
remembering the expressions for the barycentre co-ordinates, it is
found x1=_9,(_§1.k+d)
h \6b
yi= O (a2 KD sl
2h \ 12b b

Having indicated the total load in the car with a (? , and the
vertical distance between the car shoes with a h.
The stress on point B is expressed by the following equation:
dg= _Q 1 {2 WYB(kaz+d)~M+_Q~+{:l
8 h Wys Wxs \ 6b 12b A

Where [ indicates the vertical distance between two consecutive
anchorages for the guide.

Giving B:%?Eﬂ this expression becomes
X8
dg=_Q 1 [kaz B+2dp- K2az . b +l]
8h Wys 3b 12b A

By deriving Y8 compared with K it is obtained:

5dp = _Q | [_éf_ﬁ-.iz__k}z QL a2 (ZB—k
bk 8hWys { 3b 6b 48h b Wys
Where one can see that 00s =0 for k=K=28=2 Wys
ok Wxs
Also it is to be noted that
Odg =-_Q La? .o
ok? 48 h bWys all the time.

That means that K is a peak-point for function ©pg . At this point
it is necessary to make the following remarks:

a) As WyB is alwavs other than zero, K' is always higher than zero
and so is o« <arctg k¥ all the time.
The peak-point will never be reached when the load is distribut
ed on half of the front of the car.

b) For ki< b , namely o < arctg b
a a

the peak for © will be obtained for K=K'=28 .
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. - b
c) For k ={§ namely & amfgjg‘
the peak for Gg will be reached when the load is distributed on
half of the car area divided according to its diagonal

d) For k‘>-%- namely “1>3”ﬁ9-%

the peak point is to be looked for in the second interval of
definition.

2) Interval arcig %% < of <

M{'—'J

The stress on point B will always be expressed by:

dg:._ﬂ_!___.[.l_an—J_ b2 . B+2dB+_b2 e
8hWys | 2 6 ak? 6ak

which derivative as compared with K is given by:

bdg - Q1 b? <zﬁ-k)
ok LBhaWysk?

%6s - k=K=28=2 Wy
Once more the ?ﬁf-—ﬂ for per Wxo

whilst as for the derivative number two
b2ds - _ Q@ [ b2 -3
ok ZLhaWys k& ( B+k)

which is equal to zero for k=k"=38=3 Wys
Wxs
The curve suffers a deviation just in this point.
To make it more clear how function Gg changes, it may be made a
short summary:

0¢ b2ds 0
- for k<2ﬁ, kB >00 W<

the curve grows with its concavity looking downwards

k=28 808 - ¢ bZ2ds < ¢
- for ok v k2

the curve reaches its peak
2B <k <38 bds <0 bG8 ¢

- for 5k b7 k2
the curve decreases with its concavity looking downwards
- for k=38 908 <90 92ds = ¢
ok b k2

the curve finds a flex-point
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k>33 0 0g < 0 2 g )
- for bh o k2

the curve decreases with its concavity looking upwards.

It is possible now to get down to examine the different cases
possible.

a) for k=k=28 <%%

the peak point is to be looked for in the first space of
definition;

b) for k:k‘zzrs:.g_
the peak for s is obtained when the load is distributed on
half of the car area divided according to its diagonal;

c) for k=k=28>0b

a
the peak for Gg is reached by K = K' = 2 ﬁ ;
d) as WxB is always other than zero
kK'=28=2 Wys . all the time
Wxs o < I
and therefore 2 all the time.

The distribution of the load on the lateral half of the car will
never correspond to a peak of Gg

Critical Point D

The equations expressing the stress Cp according to K are formal

ly identical to those relating to point B. The only difference
consists of the different values of the resistance modules to
bending.

The peak point for Sp does not coincide with the peak point for (:8

1) Interval 0 < & < arctg b
a

To make calculation easier it is assumed the compression stress
as positive. Therefore the generical expression of Wp is given
by the following equation

o= 0L {ka2&+2d8-.—_-—kz‘-az +—‘9—+e]

" §hwyo | 3b 2b &
. _ W yD
having assumed k.- W x D moreover
0¢p . Qa2 (25-k>
bk L8 hbWyo

which is equal to zero for k:k°=2X=2.%£%
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- 02¢p .. Q| a? < 0
and finally SK? I8h bWy
Therefore K" is the peak point for function ©7p

In addition, the same remarks-made for Cg apply to this too.

a) The peak point will never be reached with load distributed on
the front half of the car.

b) For K = K" < —§~

The peak for ©p will be obtained for K = K" = zj
b

¢) For K = K" = —— = 24

(load distributed on half of the car divided by its diagonal).
b
d) For K = K" > -
The peak point is to be looked for in the second space of defini-

tion.

b
2) Interval anﬁg.g_< x < %%

dD=_.g‘.__l._._.._<.l_36”

b ¥ .2d8+_Db% <o
8h Wyo

i
2 6 ak 6ak

from which

5¢ . QLb? ‘(zxwk)
bk L8haWyok3

which is equal to zero for K = K" = 2 } =2 "%%%"“
where there is the peak point.
Besides S2¢p = QL b? (—36+k)
Sk2 24 haWyo k&
which is equal to zero for K = K" = 3¢f = 3 *%f%——
which is the flex-point.
The process for curve $p is therefore totally similar to that

for curve ©8
The different positive cases are the following:

T _ 5, _WyD b
a) for K = K" = 2 ¢ =2 s -

The peak point is to be looked for in the first space of defi-
nition.
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WyD b
b) for K = K" = 24 = 2 —X2 _ 2
WxD a

The peak for ©p is obtained with a load distributed on the
car divided according to its diagonal.

b
C)fOI‘K:K":ZJ‘?T
The peak for ©p is obtained with K = K" = 2 ¢4

d) as WxD ia always other than zero

[ — _W_LD.__ £ _.._I.T__
Kt = 24 = 2 S —— always
and therefore " = arctg K" < S always.

The distribution of the load on the lateral half of the car
area will never correspond to a peak of $p

Comparative analysis between the maximum stresses in critical
points

To make the research for the maximum stresses easier, it is
advisable to prepare a synoptic table stating the geometric and
mechanic features of the plates generally used as guide rails.
In the table below it is shown the features of guide rails mostly
used, having taken the relevant data from the catalogue of a well
known manufacturer of guide rails for elevators.

Ix Wxs WX Jy Wys wWyo |2 Wys 2 Wyo
TYPE Wxs | Wxp

607 | 2590|1570 | 6,10 | 12,80 | 4,30 | 36,57 | 0,55 | 11,99
60 60x7

708 | 4750 [ 23,75 | 9.60 | 23.20 | 6,63 | 58,00 | 0,56 | 12,08
70x70x8

809 | 79,00 |33.62 1611 | 39,00 9,50 | 86,67 0,57 |12,28
80x80x9

975 100,86 | 37,92 | 15,91 | 53,22 | 11,82 | 66,53 | 0,62 | 8,36
75x90x 16

125 151,49 | 62,34 | 26,25 |161,47 { 25,84 | 201,84 | 0,83 | 15,38
82x125x 16




