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Abstract: With high capacity and low cost, the traction system is used in various lifting applications. 

Caused by the effect of hoisting and compensation rope with time-varying length, the longitudinal 

vibration of the system is varying moderately during the period of operation. In this paper, the 

dynamic model of the traction system with compensating rope is established based on Lagrange 

equations of the first kind. The compensating rope is tensioned by a pulley with external force 

working on it. The dynamics resonance characteristics under different working conditions of 

bidirectional conveyances and tensioning pulley can be obtained, which can provide reference for the 

design of long- travel and high-speed hoisting systems. 

1   INTRODUCTION 

Due to their ability to resist relatively large axial loads, ropes have been widely used in many different 

applications to support structures, conduct signals, and carry payloads. Many researchers have 

concentrated on the longitudinal vibrations of the hoisting cable or container for decades. 

Kaczmarczyk and Ostachowicz [1,2] investigated the longitudinal responses of a hoisting cable in the 

mine hoisting system and a compensation cable in a high-speed elevator. Ren and Zhu [3] presented 

the longitudinal and lateral vibrations of a moving two-cable one-rigid-body-car system, in which the 

rotation of the car is considered. For the spatial discretization of a cable, assumed modes method 

(AMM) [3] and finite element method [4, 5] are commonly adopted. For the equation of motion, 

Lagrange’s equations [6, 7] or Hamilton’s principle can be selected. Terumichi Y. [8] researched the 

nonstationary vibration of a string with a constant hoisting speed, and the analytical results showed 

that the axial velocity of the string influenced the peak amplitude of the string vibration at the passage 

through resonances. But in above references, only single side dynamic model is established and the 

compensating rope is ignored, so the effect of tensioning pulley and tensioning force on the traction 

system can’t be investigated. 

2   MODEL DESCRIPTION 

As shown in Fig. 1, the traction system with tension at the pulley is investigated, the length of hoisting 

cable is donated as ( )il t , and their corresponding velocity and acceleration can be expressed as ( )iv t  

and ( )ia t , respectively. 
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Figure 1 Traction system with tension at the pulley 

3   MATHEMATICAL MODEL 

The model was established based on the energy method, and the kinetic energy is given as followed: 
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The potential energy of the traction system is a function of the vibration displacement, which is given 

as followed: 
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Where ( )1,2i i =  is the linear density of the lifting cable with concentrated inertia elements im  

attached to it. im  is the hoisting conveyance mass. ( , )iT x t  is the tension at position x of the cable. 

( ),iu x t  is the longitudinal vibration at position x  of the cables; 3u  is the longitudinal vibration 

of the tensioning pulley, em   is the quality of the tensioning pulley, ek   is the stiffness of the 

tensioning spring, LL  is the distance between traction pulley and tensioning pulley.  

  is the elastic strain of the cable. Caused by the neglection of transverse vibration, the expression 

of   can be obtained as follows: 
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After the normalization, the kinetic energy, the elastic potential energy and the gravitational potential 

energy of the system are brought into the Lagrange equation of the first kind. 
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In this paper, the constraint conditions at the tensioning pulley can be defined as: 

 ( ) ( )1 1 2 3: , , 2g u LL t u LL t u+ =   (6) 

Using AMM, the solution can be expressed as: 
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Where iU   is the assumed mode and set as ( )
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iq   is the generalized 

displacement and set as  
T

1 2 3, ,q q u . As shown in figure 1, 1q
is the generalized displacement of the 

left rope, 2q
 is the generalized displacement of the right rope, and 3u

  is the generalized 

displacement of the tensioning pulley. 

Substituting Eqs. (7) into Eq. (5), The equation of motion can be reduced as followed: 
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Where G is the Jacobian matrix of the constraint equations, and ( )1 2, ,..., c   =  are Lagrangian 

multipliers, which denote the constraint forces between two hoisting cables and the tensioning pulley, 

 
T

1 2 3, ,Q q q u=  is a vector of generalized displacement. By derivation, the forcing term F  can be 

obtained as follows. 
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4   NUMERICAL CALCULATION  

The parameters used in the numerical simulation are as listed in Table.1. 

Table 1 Fundamental parameters of the system 

Parameter Definition Value 

H Travel Height 401 m 

V Running Velocity 10 m/s 

A Running Acceleration 2 m/s2 

ρ Rope linear mass density 22.6 kg/m 

Es Rope Modulus of elasticity 1.2 × 1011 Pa 

As Rope Cross section area 6.94 × 10−3 m2 

𝑴𝒛 Conveyance mass 1.5 × 104 kg 

 

The frequency characteristics of the two-conveyance system can be obtained by numerical calculation, 

which is shown in Fig 2. The kinetic equation can be obtained using AMM and the mass matrix M 

and the stiffness matrix K can be extracted. Finding out eigenvalues of the matrix /K M  , and the 

natural frequencies of each order can be obtained by sorting the eigenvalues at corresponding time. 
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(a)                             (b) 

Figure 2 The frequency characteristics of the bilateral hoisting system with tensioning 

pulley and without tensioning pulley 

Figure 2-(a) stands for the descend progress of M1, and Figure 2-(b) is in the opposite direction. In 

the figures above, the solid lines are the natural frequency of lifting system without tensioning pulley, 

and the dotted lines are the natural frequency of lifting system with tensioning pulley. From the result 

above, we can see the natural frequencies of each order of lifting system are decreasing 

correspondingly caused by the tensioning pulley.  

 

 

Figure 3 The longitudinal displacement of bilateral conveyance with different tensioning 

stiffness 
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Figure 4 The longitudinal displacement of tensioning pulley with different tensioning 

stiffness 

Firstly, the impact of the tensioning spring is discussed by comparing the numerical solution results 

of different stiffness working on the pulley. As shown in Fig 3 and 4, the curve trend of hoisting 

conveyance with and without tensioning pulley are basically similar. By comparing the red and black 

line in above pictures, the vibration amplitude of hoisting conveyance without tensioning stiffness is 

much higher than that with a tensioning spring of proper stiffness working on the pulley. However, 

by comparing the yellow and black line in above pictures, it can be seen that the tension spring can't 

get its effect if the tensioning stiffness isn’t selected in the appropriate range. The results show that 

the tensioning stiffness can achieve the vibration amplitude’s suppression of the hoisting conveyance. 

Similarly, as shown in Fig 4, the longitudinal displacement of the tensioning pulley is also decreased 

by proper tensioning stiffness working on it. 

 

Figure 5 The longitudinal displacement of bilateral conveyance with different tension 

forces 
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Figure 6 The longitudinal displacement of tensioning pulley with different tension forces 

Lastly, the impact of tensioning force is also discussed by comparing different tensioning forces 

working on the pulley. As shown above, the dynamic amplitude of the conveyances and tensioning 

pulley aren’t substantial changed with the increase of tensioning forces. The difference among 

different tensioning forces is the change of cables’ static displacement at the conveyances and 

tensioning pulley caused by the tension forces. It can be concluded that the tensioning forces working 

on the pulley will not affect the longitudinal vibration shape of the traction system. 

CONCLUSION 

In this paper, the dynamics behavior of the traction system with tension at the pulley is investigated. 

The cables are spatially discretized using the AMM and the equations of motion are established by 

Lagrange equations of the first kind. From the numerical results, it can be concluded that the 

tensioning spring with proper stiffness can suppress the longitudinal vibration at the conveyance and 

tensioning pulley. However, the tensioning force working on the pulley at the bottom of the traction 

system can’t play an effective role in the vibration suppression. Above all, this theoretical model can 

predict the response of the traction system, which will lay the foundation for the longitudinal vibration 

control of elevator hoisting system. 
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