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Abstract. Lift systems are susceptible to damage when buildings are subjected to strong earthquake 

motions. The counterweight - guide rail and car guide rail systems suffer from earthquake-induced 

vibrations. The most common mode of failure is the counterweight derailment. This paper reviews 

that dynamic phenomena and presents a model to study, to predict and to mitigate the effects of the 

seismic responses of guide rail – counterweight/ car – suspension systems. The application of a 

Tuned Mass Damper (TMD) is a convenient method to reduce the guide rail-counterweight/ car 

response and to control the system operating under seismic conditions. In the TMD arrangement 

vibrations of the counterweight/ car can be suppressed and the stresses in the guide rails reduced by 

the application of an auxiliary spring – damper - mass system attached to the main structure. In the 

counterweight system a part of the counterweight mass can be used as the auxiliary mass. The 

performance of the TMD can be improved by the application of an actuator force determined by a 

suitable feedback control algorithm. 

1 INTRODUCTION 

Lift installations subject to seismic conditions suffer from service disruption and damage. Various 

surveys have been conducted and the performance of lifts during strong earthquakes has been 

documented and analyzed [1-2]. For example, the statistics from the analysis of an earthquake 

which took place in San Fernando, California, on 9th February 1971, caused significant damage to 

vertical transportation systems in affected buildings, and provided a base for development of safety 

requirements for lifts operating in seismic risk zones [3,4]. The available statistics show that the 

counterweight - guide rail as well as the car guide rail systems suffer from earthquake-induced 

vibrations. The counterweight is the heaviest component of a lift system and the most common 

mode of failure is the counterweight derailment and its collision with the car. Other damage and 

modes of failure include bent guide rails, broken guide rail brackets, loose/ broken roller guides, 

moved/ damaged machine room equipment, suspension ropes/ compensating ropes damaged/ 

jumped out of the traction sheave/ diverter pulleys and broken/ tangled travelling cables.  

A good understanding and prediction of dynamic phenomena occurring in lift installations subject 

to excitation forces due to earthquake ground motions is essential for developing mitigation and 

control strategies. The national and international safety codes [4,5] provide specific design guidance 

and safety measures to be applied for lift installations that operate in seismic zones. Those include 

the application of seismic switches / detection systems, counterweight displacement detectors, 

position restrainers to the car and counterweight frames, rope guards to prevent ropes jumping from 

the sheaves /pulleys and reinforced guide rails. Additional mitigating measures might involve 

damping devices and the use of a part of the counterweight as a tuned mass damper (TMD) [6]. In 

this paper, a dynamic model of a lift guide rail – counterweight/car - suspension system subject to 

seismic excitations is developed in order to analyse and assess the effectiveness of application a 

TMD to suppress the dynamic response of the lift system. 
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2 BUILDING STRUCTURE AND LIFT GUIDE RAIL – COUNTERWEIGHT/CAR - 

SUSPENSION SYSTEM INTERACTION MODEL 

The diagram presented in Fig. 1(a) shows a typical configuration of a traction lift installation, and 

Fig. 1(b) illustrates a simplified model of a building (host) structure - lift guide rail – 

counterweight/car - suspension system subjected to seismic excitation. A mass – vertical rope 

system is mounted within the hoistway (well) structure. The larger (primary) mass shown on the 

diagram as M, represents the lift car or counteweight which is attached to the lower end of the rope 

(equivalent to the multi-roping arrangement in the lift suspension system) of length L and is 

constrained horizontally within the host structure by a spring of effective coefficient of stiffness k. 

This spring represents a combined flexibility of the roller guide - guide rail – guide rail bracket 

system. The auxiliary (secondary) mass md is attached to the primary mass via a spring – damper 

element of coefficient of stiffness kd and coefficient of viscous damping cd. The upper end of the 

rope is passing through O at the top of the well of height AB = Z0. The system moves vertically in 

the hoistway at transport speed V and acceleration a. The mean quasi-static tension, mass per unit 

length, modulus of elasticity and cross-sectional metallic area of the rope are denoted as 

   i
dT M m m L x g a       , m, E and A, respectively. The Eulerian spatial coordinate x is measured 

from the upper end downwards as shown. The lateral dynamic displacements of the rope are 

denoted as v(x,t). They are coupled with the longitudinal displacements denoted as u(x,t). The 

lateral and longitudinal motions of mass M are denoted as vM(t) and uM(t), respectively. The 

auxilliary mass md is constrained to move horizontally with its motion denoted as zd. The structure 

is subject to ground motion s0(t) and that the structure undergoes bending deformations with 

displacements  0v t  at the top of the well.  

       
(a)      (b) 

Figure 1 (a) Traction lift system; (b) simplified model of the car/ counterweight mass – 

suspension rope system with TMD 
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2.1 Equations of Motion 

The equations of motion can be developed by the applications of the Hamilton’s principle [7] and 

are formulated as follows 

    (1) 

where 2
x xu v 2    represents the axial strain,      

t x
D Dt V   ( )t and ( )x represent partial 

derivatives with respect to time t and x, respectively,   ML dT M m mL g a     and s  is the 

deformation of the equivalent spring k. For tensioned members such as steel wire ropes (SWR) the 

lateral frequencies are much lower than the longitudinal frequencies. Thus, considering that the 

excitations frequencies are much lower than the fundamental longitudinal frequencies the 

longitudinal inertia of the ropes can be neglected in the first equation in (1). This equation can be 

integrated to give   2
x xu e t v 2   where e(t) represents the quasi-static axial strain in the rope. 

2.2 Resonance response to ground excitation  

During the earthquake activity buildings are subject to ground (base) excitation motion. Very often 

the fundamental frequencies of the buildings fall within the frequency range of the ground motion 

[2]. Thus, in the scenario considered in this paper it is assumed that the ground motion s0(t) 

corresponding to the harmonic of frequency 0  is exciting the fundamental mode of the building 

structure of the same frequency. This excitation results in bending deformations of the well 

structure described by the polynomial shape function   2 33 2      (see Fig. 1), where 0z Z   

with z denoting a coordinate measured from ground level. At the top of the well (z = Z0) the bending 

deformations lead to harmonic motions / displacements v0 of frequency 0  and of amplitude v0max. 

In order to accommodate the base excitation in the equations of motion (1) the overall lateral 

displacements of the rope – mass system are expressed as  

    0
0 0

0

1
( , ) ( , ) 1 ,   L

L

Z L
v x t v x t s t x v t

L Z


 

  
       

   
            (2) 

where s0(t) is harmonic motion of frequency 0  and      0 00
v t v t s t  . The relative lateral 

displacements ( , )v x t  can then be expressed using the finite series given by  

   
1

( , ) ;

N

n n

n

v x t x L q t 


                   (3) 

where  nq t  represent the generalised coordinates and  ;n x L     are orthogonal trial functions 

depending on the spatial coordinate and the length of the ropes. In this formulation it is assumed 

that the lift is moving at reduced speed under the seismic conditions. Thus, the length of the rope 

varying slowly with time meaning that the change of L over a period corresponding to the 

fundamental frequency of the system is small compared to L [7]. In order to represent this fact a 

slow time scale defined as єt  , where є 1=  is a small parameter, is introduced. 

The trial functions satisfy the homogenous boundary conditions and are defined as 

    ; sin , 1, 2, ,n nx L L x n N            , with N denoting the number of terms/ modes taken in (3). 
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The eigenvalues   n L   that vary with the length of the rope are determined from the frequency 

equation given as 

         2 sin cos 0,  i
Md n n Md n n Md d

M
k T L T L T T L M m g a

m
   

 
       

 
         (4) 

It should be noted the stiffness coefficient k would vary with vertical motion of the mass. However, 

an assumption is made that this variation is small and k is considered to have a constant value [8]. 

As stated above k represents a combined flexibility of the roller guide and the guide rail – guide rail/ 

bracket system. In the analysis to follow the guide rail is modelled as multi-span beam. The 

coefficient of stiffness is then calculated according to BS EN81-50:2014 specifications for guide 

rail deflection (based on a 3-span beam model). The TMD design can then based on the worst case 

scenario when the system is near the resonance. 

The response of the system when rth mode is subject to resonance can then be determined by 

considering a single-mode approximation with the relative displacements expressed as 

   ( , ) ;r rv x t x L q t     . The linearized lateral response (uncoupled from the longitudinal mode) of 

the main mass can then be defined by the following set of two ordinary differential equations 
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where modal damping is introduced through the coefficient 2 ,r r r rc m    where r r rk m   and 
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    (6) 

At the right-hand sides of Eq. 5 rQ  and rZ  represent excitation functions due to the base harmonic 

motions.  

3 COMPUTER SIMULATION TESTS AND RESULTS 

The dynamic response of the system to seismic excitation is investigated through a numerical 

simulation of the linearized equations (5). The 4th-5th order Runge-Kutta algorithm is used in the 

simulation tests. The fundamental parameters of the system are presented in Table 1. In the scenario 

considered in the simulation the fundamental frequency of the building is given as 

0  = 3.3929 rad/s (0.54 Hz) . The primary mass M = P + 0.5Q representing a counterweight (cwt) 

is fitted with a TMD and travels upwards at reduced speed of 0.75 m/s. During travel the length of 

the ropes is changing from L(0) = Lmax = 128.66 m to to Lmin = 8.66 m. The frequency of excitation 

is near the 2nd natural frequency (n = 2) and the 1st (fundamental natural frequency, n = 1) of the 

cwt – suspension system during the lift travel when the length of the ropes are between 120 m – 100 

m and 60 m - 40 m , respectively, see Fig. 2. Fig. 3 shows the corresponding mode shapes of the 

system determined at L = 120 m and 45 m, respectively. The optimal value of damping ratio of the 

TMD system is determined as 
 
3

8 1
d








, where d

re

m
m

  , so that 2d d d dc m   , where 
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  . By noting that the ratio of natural frequencies is given as   1
1d
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  , the 

coefficient of stiffness of TMD is determined as 
2

1

r
d dk m





 
  

 
.  

Considering that the frequency of base excitation becomes tuned to the fundamental mode of the 

system when the length of the suspension ropes L is approximately 45 m the parameters of TMD 

are determined as md = 296.913 kg, kd = 2819.9 N/m and cd = 337.895 Ns/m. Fig. 4 and Fig. 5 show 

the lateral response Mv  of the primary mass vs. time, and the corresponding forces acting upon the 

guide rail vs. time, determined by numerical simulation, with TMD action (red solid lines) and 

without TMD action (dashed blue lines). The plots presented in Fig. 4 correspond to the region 

where the frequency of excitation is near and the fundamental natural frequency and the plots in 

Fig. 5 correspond to the region where the frequency of excitation is near to the 2nd natural frequency 

of the system, respectively. Within those regions both modes are associated with the motion of cwt. 

It is evident that the resonance oscillations and forces are becoming attenuated by the TMD action 

by about 30%. In addition, Fig. 6 demonstrates that the application of TMD at the cwt results in 

attenuation of the rope vibrations that are associated with the 2nd mode of the system.  

Table 1 Fundamental parameters of the system 

Parameter Value Unit 

Car mass P 2000 kg 

Rated load mass Q 1600 kg 

Rope mass per unit length mr 0.872 kg/m 

Number of ropes nr 6  

Travel height H 120 m 

Young’s modulus of guide rail Eg 2.07×105 N/mm2 

Guide rail 2nd moment of area 947×104 mm4 

Guide rail bracket spacing Lg 2.5 m 

Roller guide coefficient of stiffness krg 1.6674×105 N/m 

Damping ratio r 0.25   

Fundamental frequency of the building 0  0.52 Hz 

Peak amplitude displacements of the building v0max at z = Z0 75 mm 

Mass ratio  0.1  
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Figure 2 The 1st mode and 2nd mode natural frequencies and resonance regions. 

  

(a)                                                             (b) 

Figure 3 The 1st mode and 2nd mode shapes (a) at L = 45 m, (b) at L = 120 m. 
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(a)                                                               (b) 

Figure 4 (a) Displacements of the primary mass; (b) guide rail forces at the 1st mode 

resonance (blue dashed line without TMD and red solid line with TMD action) 

  
(a)                                                               (b) 

Figure 5 Displacements of the primary mass (a) and guide rail forces (b) at the 2nd mode 

resonance (blue dashed line without TMD and red solid line with TMD action) 
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Figure 6 Displacements of the rope at x = L/4 at the 2nd mode resonance (blue dashed line 

without TMD and red solid line with TMD action) 

4 CONCLUDING REMARKS 

Seismic-induced ground motions have adverse influence on the performance of lift installations. 

Dynamic models and computer simulation techniques facilitate the prediction of responses to, and 

mitigate the effects of, those excitations. The analysis and results presented in this paper show that 

under resonance conditions the application of a passive TMD system forming a part of the 

counterweight (or the car – frame assembly) is effective in reducing the dynamic responses and 

dynamic forces acting upon the lift system components. The level of reduction predicted in the case 

study discussed above is about 30%.  In order to achieve higher performance of the system an active 

TMD (ATMD) can be introduced. The ATMD system is equipped with a controller, sensors and an 

actuator providing a control force [9].  
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