
A Systematic Methodology for the Generation of Lift Passengers 
under a Poisson Batch Arrival Process 

Richard Peters1, Lutfi Al-Sharif2, Ahmad T. Hammoudeh2, Eslam Alniemi2, 
Ahmad Salman2 

1 Peters Research Ltd, 
Boundary House, Missenden Road, Great Kingshill, Bucks HP15 6EB, UK 

richard.peters@peters-research.com 
 

2Mechatronics Engineering Department, 
The University of Jordan, Amman 11942, Jordan 

Keywords: lift, elevator, traffic analysis, simulation, inter-arrival time, inter-service time, 
exponential probability density function, Poisson probability density function, batch arrivals, 
passenger arrival process. 

Abstract. It is generally accepted that passenger arrivals for lift service follow a Poisson arrival 
process.  Moreover, recent research has also shown that the arrivals take place in batches rather than 
single passenger arrivals.  For these reasons, lift traffic simulation software may use the Poisson 
batch arrival process to generate the time of each batch arrivals and the size of each batch (i.e., the 
number of passengers arriving in each batch).  This provides a better representation of real life 
conditions and produces a more realistic simulation.  Alternative models for generating passengers 
for lift traffic simulation packages are considered. A methodology for generating batch arrival times 
and the size of each batch is presented. 

1 INTRODUCTION 

An important part of any lift traffic simulator is the passenger arrival process.  The passenger 
arrivals represent the demand to which the lift system is subjected.  The passenger arrival model 
should reflect the actual characteristics of the arrival process.  This ensures that the output of the 
simulation is more representative of reality.  In this paper, alternative arrival models are presented 
and discussed.  A new methodology for generating passenger arrivals is proposed. 

2 POSSIBLE PASSENGER ARRIVAL GENERATION MODELS 

This section examines possible models with which passengers can be generated for lift traffic 
simulation.  All examples in this section assume a passenger arrival rate, � of 0.2 passengers per 
second. 

2.1 Constant inter-arrival time 

This is a simplification of the passenger arrival process.  It is assumed that the time between the 
arrivals of consecutive passengers is constant (i.e., deterministic rather than random).  The time in 
seconds between the arrivals of consecutive passengers or inter-arrival time ∆� can be calculated: 

 ∆� = 1/� (1) 

A diagrammatic representation of passenger arrivals against time is shown in Figure 1.  As the 
arrival rate is 0.2 passengers per second, then the inter-arrival time is 5 seconds. 
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Figure 1  Passenger arrivals with constant inter-arrival time 

2.2 Random inter-arrival time with uniform probability density function 

This model assumes that the inter-arrival time is random.  However, it contains a simplification of 
the passenger arrival process by assuming that the distribution of the inter-arrival time is a uniform 
probability distribution function (pdf).  The value of the inter-arrival time has an average value of 
1/� and varies between 0 seconds and the twice the average value 2/�.  

The value of an inter-arrival sample time can be evaluated using the equation 2 where Rand is a 
function that generates a uniformly distributed random number between 0 and 1.  This yields the 
representation of passenger arrivals given in Figure 2. 

 ∆� �
�	
	���

�
 (2) 

 

Figure 2  Passenger arrivals under a rectangular pdf process 

Although this model offers a better representation of the passenger arrival process by introducing 
random passenger arrivals, it assumes that a passenger must arrive in the time period of 2/�

 
which 

is not necessarily true.  A much longer period of time might pass without a passenger arriving.  
Moreover, the model gives equal probability to all possible values of the inter-arrival time, which is 
not an accurate reflection of reality. 

2.3 Random passenger arrivals applying Poisson probability density function 

The most widely accepted passenger arrival model is the Poisson process [1, 3, 4].  This assumes 
that the number of passengers arriving in a period of time follows a Poisson distribution, see 
Equation 3. 

 ���� �
��∙���	∙���∙�

!
 (3) 
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Where ���� is the probability that the number of passengers arriving in the period of time T is 
equal to n.  Using a period, T of 10 seconds, the Poisson probability density function has been 
generated and shown in Figure 3.  Figure 4 shows a representation of passenger arrivals. 

 

Figure 3  Probability destiny function for a 
Poisson arrival process 

 

Figure 4  Passenger arrivals under a Poisson 
pdf process 

The passengers are assumed to arrive in the middle of the period of time T (10 seconds) as the 
actual arrival time of each passenger is not defined.  For this reason, this basic application of the 
Poisson process is unrealistic, even with a smaller T. 

A further disadvantage of this approach is that the number of passengers generated in the time 
period does not necessarily correspond to the arrival rate.  This inconsistency between user input 
and passengers generated can cause confusion to users of traffic simulation software. 

2.4 Random inter-arrival time with exponential probability density function 

The random variable in the previous Poisson passenger arrival model is the number of passengers 
arriving in a time period, T.  A better approach is to use the inter-arrival time as the random 
variable.  This can be achieved by considering the time after which one or more passengers are 
expected, 1-P�0�.  Substituting Equation 3 yields Equation 4.  Figure 5 shows a representation of 
passenger arrivals. 

 ∆� �
�  !�"�����

�
 (4) 

 

Figure 5  Passenger arrivals assuming random inter-arrival time with exponential pdf 

As for the original Poisson approach, the number of passengers generated in the time period does 
not necessarily correspond to the arrival rate.   
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2.5 Random arrival time in a given time period 

To address the inconsistency in passenger numbers, some traffic simulators create the exactly the 
number of passengers required by the arrival rate for the time period T.  As only whole passengers 
can be generated, rounding up or down is determined using a random number.  Random numbers 
are used to place the passengers on the time line.  This achieves a similar result to the previous 
model with an exponential probability density function, see Figure 6. 

 

Figure 6 Passenger arrivals assuming random arrival in a given time period 

A consequence of this approach is that the longer the time period T, the more variation there is in 
the demand during that period.  For example, if T is 5 minutes, 60 passengers would be generated.  
If T is one hour, 720 passengers would be generated; however in the first five minutes, there may be 
58 passengers, and in the second five minutes there may be 64 passengers. 

2.6 Further considerations 

It has been shown that passengers arrive in batches [5], also referred to as bulk arrivals [2].  The 
probability density function of the batch sizes depends on the nature of the building and the time of 
the day.  Thus for every batch arrival, there are two parameters to generate:  the time at which it 
occurs and the size of the batch. 

3 A METHODOLOGY FOR GENERATING PASSENGERS FOR SIMULATION 

3.1 Steps of the methodology 

The passenger generation methodology presented in this paper combines the most useful features of 
the methods discussed in section 2: (i) the methodology assumes a random inter-arrival time with 
exponential probability density function; (ii) the total number of passengers is consistent with the 
expected number of passengers; (iii) the batch size may be building and time specific. 

3.2 Procedure 

For each floor where passengers arrive, consider the total number of passengers generated, pgen 
during the workspace, #$.  The #$ is the time over which passengers are being generated in 
seconds.  � may be determined from the passenger demand which in turn is calculated according to 
population and building type. 

 %&� � 	� ∙ #$ (5) 

To generate passengers for the #$: 



A Systematic Methodology for the Generation of Lift Passengers under a Poisson Batch Arrival Process 175 

 

1. Calculate the required number of passengers to be generated as shown in equation 5. Assign the 
first passenger’s arrival time to zero seconds. 

2. Using Equation 4 generate the inter-arrival times between all the consecutive passengers. 
3. Repeat step 2 until the number of passengers generated is one more than the required number of 

passengers, %&� + 1.  
4. Discard the last passenger generated, but retain his or her arrival time.  This arrival time will be 

referred to as #$′. 
5. It is likely that the value of #$′ is different from the desired workspace time, #$.  Thus apply a 

shrink or stretch correction factor, $) = #$/#$′ to the whole set of arrival times.  This will 
ensure that the total passenger generation time is equal to #$.   

3.3 Example without batch arrivals 

A building has a population, U of 1000 persons and arrival rate, AR% of 12% of the population per 
five minutes at the floor being considered.  The value of the workspace is 60 seconds. 

 � =
*�% ∙,

-..
=  

"�% ∙"...

-..
= 0.4 %1223�4352/2367�8 (6) 

The expected number of passengers to be generated in the workspace can be calculated: 

%&� =   � ∙ #$ = 0.4 ∙ 60 = 24 (7) 

The arrival times of each passenger are shown in Table 1, column 2.  As the target number of 
passengers is 24, the number of passengers that are initially generated is 25.  The 25th passenger will 
be discarded, but his or her arrival time retained.  Table 1, column 2 needs to be shrunk or stretched 
such that exactly 24 passengers arrive within 60 sec.  The correction factor is found by dividing the 
desired workspace by the actual workspace. 

 $) =
:;

:;<
=

=.

=-.=>�?
= 0.9426   (8) 

The arrival times are thus adjusted by multiplying them by SF, as shown in Table 1, column 3.  The 
original and adjusted arrival times for the 24 passengers are shown in Figure 7 with each passenger 
arrival shown as an inverted triangle. 
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Table 1:  Passenger arrival times 

Passenger (#) Arrival time (s) Adjusted arrival time (s) 
1 0 0 
2 5.5392 5.2214 
3 6.556 6.1798 
4 9.5555 9.0071 
5 10.1065 9.5265 
6 10.1841 9.5996 
7 13.5913 12.8113 
8 15.3242 14.4448 
9 16.9587 15.9855 
10 22.8361 21.5256 
11 25.1892 23.7437 
12 27.5929 26.0094 
13 32.4982 30.6332 
14 36.5914 34.4915 
15 38.7407 36.5175 
16 39.2458 36.9935 
17 39.9316 37.64 
18 45.3718 42.768 
19 45.4445 42.8365 
20 47.1274 44.4228 
21 47.587 44.8561 
22 57.2073 53.9243 
23 60.3254 56.8634 
24 62.0606 58.499 
 63.6529 60 

 

 

 

Figure 7  Initial and adjusted passenger arrivals 
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3.4 Example with batch arrivals 

A building has a population, U of 300 persons and an arrival rate of 4% of the population per five 
minutes at the floor being considered.  The value of the workspace is 15 minutes. 

 � �
*�% ∙,

-..
=  

A% ∙-..

-..
= 0.04 %1223�4352/2367�8 (9) 

Using the value of the arrival rate above, the expected number of passengers to be generated in the 
workspace can be found as shown below: 

 %&� =   � ∙ #$ = 0.04 ∙ 900 = 36 (10) 

The probability density function that is to be used for the generation of the batch sizes, based on 
reference [5], is given in Table 2. 

Table 2  Probability density function for the batch sizes 

Batch size 1 2 3 4 5 

Probability 37/58 13/58 6/58 2/58 0 

 

The average batch size can be calculated from the pdf as shown below: 

 C =   
"∙ -D E � ∙ "- E - ∙ = E A ∙ �

>F
= 1.5345 %1223�4352/C1�6ℎ (11) 

In order to account for the average batch sizes, calculate the batch arrival rate, bλ  in batches per 

second. 

 �I =
�

I
=

...A

".>-A>
= 0.0261 C1�6ℎ32/2367�8 (12) 

Using the arrival rate for the batches found in equation (12) the batch arrival times can be 
generated.  These are shown in Table 3 together with the batch sizes.  The batch sizes are randomly 
generated using the batch size pdf shown in Table 2. 

The 20th batch is discarded, but its arrival time is retained.  Table 3 column needs to be shrunk or 
stretched such that exactly 36 passengers arrive within 15 minutes.  The correction factor is found 
by dividing the desired workspace by the actual workspace. 

 $) =
:;

:;<
=

">

"=.�>-"
= 0.9229 (13) 

The arrival times are adjusted by multiplying them by SF as shown in Table 3, column 3.  It is 
worth noting that the initial batch sizes are not changed.  The sum of the passengers arriving in 15 
minutes is 36 passengers as required.   
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Table 3  Adjusted batch arrival times. 

Batch (#) Arrival time 
(minutes) 

Adjusted arrival time 
(minutes) 

Batch size (passengers) 

1 0 0 1 

2 0.9921 0.9156 3 

3 1.9611 1.8099 2 

4 2.667 2.4614 1 

5 2.7586 2.546 2 

6 2.7726 2.5588 1 

7 3.2973 3.043 4 

8 3.526 3.2542 4 

9 5.3186 4.9085 3 

10 7.8494 7.2442 1 

11 8.0653 7.4435 1 

12 9.097 8.3956 1 

13 10.5448 9.7318 2 

14 11.1267 10.2688 3 

15 12.5041 11.54 3 

16 14.3439 13.238 1 

17 14.8533 13.7081 1 

18 15.6866 14.4772 1 

19 16.2364 14.9845 3 

20 16.2531 15 N/A 
  Total passengers 36 

 

The original and adjusted arrival times for the batches are shown in Figure 8. 
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Figure 8  Initial and adjusted batch arrivals 

4 CONCLUSIONS 

Alternative models for generating passengers for lift traffic simulation packages have been 
presented.   

The first model assumes a constant passenger arrival rate, where the time between passenger 
arrivals is deterministic and constant.  This model is not representative of reality as it is known that 
passengers arrive randomly.  However, it can be used for the verification of the value of the round 
trip time found using calculation.  The second model assumes a uniform (rectangular) probability 
density function, where the inter-arrival time of the passengers randomly varies between 0 s and 
2/� seconds (� is the passenger arrival rate in passenger per second).  It assumes that a passenger 
must arrive at most every 2/� seconds and gives equal probability to all values of inter-arrival time 
between 0 and 2/� seconds; neither of these assumptions reflect reality.  

The third model assumes that the number of passenger, n, arriving in a period of time T follows a 
Poisson process.  The passengers are assumed to arrive in the middle of the period of time T as the 
actual arrival time of each passenger is not defined; this is unrealistic, even with a smaller T.  The 
fourth model modifies Poisson to allow for exact arrival times to be defined; this is more realistic, 
however, the random nature of arrivals means that the passengers generated in the time period does 
not necessarily correspond to the arrival rate. 

Another approach creates a Poisson-like arrival process, but generates the exact number of 
passengers expected.  Further consideration is given to research that proposes that people arrive in 
batches. 

The passenger generation methodology proposed combines the most useful features of the methods 
discussed.  (i) the methodology assumes a random inter-arrival time with exponential probability 
density function; (ii) the total number of passengers is consistent with the expected number of 
passengers; (iii) the batch size may be building and time specific.  Two examples are then given, the 
first assuming single passenger arrivals, and the second assuming batch arrivals with one or more 
passengers in each batch.  The methodology also shows how to ensure consistency between the 
actual number of passengers generated in the workspace and the actual number of expected 
passengers, by using a correction factor, SF. 
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5 FURTHER WORK 

A Kolmogorov-Smirnov goodness of fit test has been carried out on a real life survey data to 
confirm that the model assuming random inter-arrival time with exponential probability density 
function cannot be rejected.  A discussion of determining the destinations of passengers will be 
provided.  Alternative methods of passenger generation will be included in traffic simulation 
software, and an assessment made on the impact on example designs.  This work will be published 
in a future paper or papers.  The implication of turnstiles at the entry to the building or lift lobby 
also needs to be considered. 
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