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Abstract. We present a constraint programming formulatiantiie elevator trip origin-destination
matrix estimation problem, and study different daiaistic and randomized algorithms to solve
the problem. An elevator trip consists of successiwps in one direction of travel with passengers
inside the elevator. It can be defined as a dicenttwork, where the nodes correspond to the stops
on the trip, and the arcs to the possible origim$ destinations of the passengers. The goal is to
estimate the count of passengers for the origitistigon pairs of every elevator trip occurringan
building. These counts can be used to make passeaffec forecasts which, in turn, can be used in
elevator dispatching to reduce uncertainties rdldte future passengers. The results show that
randomized search improves the quality of estimatasults. In addition, the proposed approach
satisfies real time elevator group control requieats for estimating elevator trip origin-destinatio
matrices.

INTRODUCTION

Modern group controls typically plan elevator rauteased on existing calls [1,2]. At any given
moment, however, a passenger may arrive to anteleldby and give a new call which requires
the changing of previously defined routes, if tleg no longer optimal. By making forecasts of
future passengers, the group control can avoid suwxpected route changes and improve
passenger service level [3]. The forecasts shoelddsed on complete information about the
passenger traffic, i.e., on passenger journeysagsgnger journey is the journey of one passenger
from an origin floor to a destination floor. Theoptem is that, especially during heavy traffic, the
passenger journeys cannot be uniquely determinteely €an, however, be estimated by solving the
elevator trip origin-destination matrix (ETODM) &s#tion problem [4].

An elevator trip to up or down direction starts whgassengers board an empty elevator and
ends to a stop where the elevator becomes empty. ajae passengers who board the elevator
register calls that define their destinations, Hr@OD pairs of the trip. The boarding and aligiptin
passenger counts can be obtained, e.g., by megsiapwise changes in the load of an electronic
load weighing device [5]. An estimated ETODM contithe OD passenger counts, i.e., the
passenger journeys, for the OD pairs of the tripe ETODMs estimated for a given time interval
are added up to construct a building OD matrix (BOQDthat describes the passenger traffic
between every pair of floors in the building duritigat interval. The length of the time interval
depends largely on the traffic intensity, but aidgpinterval is at least five and at most 15 masut
[6]. To learn the passenger traffic in the builditige BODMs of the same time of day or time
interval, and usually day of week, are combinedgise.g., exponential smoothing [5]. The learned
BODMs can be used to make forecasts about futussepgers, namely, when and at which floors
new passengers will register new calls, what isritmaber of passengers waiting behind the new
and existing calls, and what are their destinations

An elevator trip is analogous to a single transiite, e.g., a bus line, where there is only one
route connecting any OD pair, and usually countshef boarding and alighting passengers are
collected on all stops on the route [7]. Thereraemy methods for estimating the OD matrix for a
single transit route. If the observed passengentsoare consistent, then a typical objective is to
minimize a distance measure between the predictdchdarget OD matrix subject to the so called
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flow conservation constraints. They simply requinat passengers travelling on the route do not
disappear or multiply. The target OD matrix is Ugudased on historical data or a survey. A
popular distance measure is the information minmgizfunction [8]. Similar estimators are
obtained with the iterative proportional fitting thed [7,9,10,11], and recursive methods
[12,13,14]. Other types of estimators are obtaimeth constrained generalized least squares
(CGLS) and constrained maximum likelihood approachEl]. If the observed boarding and
alighting passenger counts are not consistent, sghdistance measure between the predicted and
observed counts should also be minimized. Popylproaches are the maximum likelihood, the
Bayesian and the CGLS method [15,16,17,18,19].

A single transit route is usually defined in adwam@and remains as such for long periods of time.
This means that it is possible to collect many ¢euwm the same route during a given time period,
e.g., a rush hour, and use these counts to estamatage passenger counts for the OD pairs of the
route. An elevator trip is request driven which me#hat there may not be two similar elevator
trips even within a day. In addition, every elevatip has its own set of OD pairs, and boarding
and alighting counts. This is why we need to esn@aseparate OD matrix for each elevator trip.
Because there cannot be partial passengers, dabyeinsolutions are acceptable. If the requests and
the measured counts affect the domain of the piei©OD passenger counts then, unlike in a single
transit route, they must be taken into account wHefining whether an ETODM estimation
problem is consistent or not.

In [4], the ETODM estimation problem was formulataed a box-constrained integer least
squares (BILS) problem and algorithms for findidgsmlutions to the problem were presented.
When all solutions are available and one is saleetery time, e.g., randomly or as the average of
the solutions, the BODMs are not affected by tlg@@dhm used in solving the problem. In the long
term, this strategy results in BODMs that modeldrethe possible realizations of the passenger
traffic, and enable robust passenger traffic fosgng in elevator dispatching. In [20], an ETODM
was estimated by solving a succession of positiverse problems. Both of the above methods can
solve inconsistent problems, but the latter findly @ single solution to the problem. This is a aot
good property when the goal is to construct BODbIsgassenger traffic forecasting. In [21], the
ETODM estimation problem was formulated as a linfgagramming (LP) problem. The presented
approach, however, can be used only for consigrefiiems.

For implementing an ETODM estimation algorithm imeal elevator group control application,
the algorithm must be fast to reduce CPU load, tartthve the most recent information about the
passenger traffic all the time. The BILS approasiiaster than the LP approach [4,21]. However,
since the ETODM estimation problem is in generatidird, all solutions to sufficiently complex
problems cannot be found within a reasonable tithelwin a real application can be defined to be
at most 0.5 seconds.

We formulate the ETODM estimation problem as a tran# optimization problem (COP) [22].
The formulation is based on elevator movements, stgps, service requests, e.g., landing and car
calls, and counts of boarding and alighting passendn addition to respecting a set of constraints
a solution to the problem is optimal with respextat predefined distance measure between the
predicted and observed passenger counts. We seléwteleast squares (LS) objective function
because it favors solutions where the differende/éen all of the predicted and observed counts is
small, which is reasonable considering a real appbn.

One advantage of the CP approach compared to theiops approaches is that both
deterministic and randomized optimization proceduresulting in a single or multiple optimal
solutions, can be easily implemented. Intuitivefyonly some (instead of all) of the optimal
solutions can be computed within a real time lintlitgen a randomized search should result in
BODMs that describe better the possible realizatiminthe passenger traffic, i.e., BODMs of better
quality. The reason is that a deterministic seavdhalways favor particular solutions. By using
different deterministic and randomized candidatgoalhms (CA), we study the effect of
randomization on BODM quality. BODM quality is measd based on the total squared deviation
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between the estimated and the true BODM. In additice compare the different CAs with respect
to solving time.

CONSTRAINT PROGRAMMING FORMULATION

We define an elevator trip as a directed networkadesN = {1,2, ...,n}, and arcsA defined by
OD pairs(i,j), i,j € N. The node corresponds to th#gh stop on the elevator trip. Let be the
node at which a delivery request to the nodeN, r; < i, is registered. If no delivery requests are
registered to nodég thenr; = n+ 1. Let b; anda; denote the measured count of passengers who
board and alight at node€ N, respectively. The elevator capacity, expressecwasber of
passengers, is denoted with
We assume that:
1. Atanytime, there are less thé@rpassengers in the elevator.
2. Atleast one passenger boards at ngden + 1 and alights at nodie
3. Passengers do not alight at a node without a dglreguest.
4. A passenger who boards at node 7;, i.e., before the delivery request to ngdes
registered, does not alight at ngde
The assumptions 2 and 3 imply that we trust thevelsl requests. The fourth assumption means
that the possible destinations of a passengeredineed by the delivery requests that are registered
before or at the node where the passenger boagdddtator, which is usually the case in practice.
This eliminates some OD pairs, and thus, an eleusw often includes a smaller number of OD
pairs than a single transit route where typicaily aodei forms an OD pair with any other nogle
i<j.
The set of arcd is defined as:

A={(,j) eN?li<j Aiz=r}) (1)

Let B; € [0,C] andA; € [0, C] denote the predicted count of passengers who taatdlight the
elevator at node € N, respectively. LetP; € [1,C], i =1,..,n—1, denote the number of
passengers in the elevator between the nédasdi + 1. Finally, let X;; € [0,C] denote the
predicted passenger count along the arc or OD(p4ir € A4, i.e., the passenger count from origin
to destinatiory, that we want to estimate.

The predicted boarding and alighting counts mustdresistent:

;Bi - ;A,.. )

Three formal rules for separating successive etevaps from each other were presented in [4]. In
general, an elevator trip starts at a stop whesegragers board an empty elevator and ends to a stop
where the elevator becomes empty again. Hencéyeafirst node, the predicted boarding count
must be at least one and the alighting count za1d,at the last node the reverse must hold:

A; =0, B,>1, A4,>1, B, =0. (3)
At every node between the first and the last natlisast one passenger either boards or alights:

A+ B >1 1<i<n (4)
By taking into account the assumptions 2 and 3,cthvestraint in Eq. 4 can be more accurately

stated as follows. According to assumption 2, asti@ne passenger boards at ngde n + 1 and
alights at node:
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nnt+leX, ;=21 1<i<n, (5)

and according to assumption 3, passengers canigbt at a node to which there is no delivery
request, and thus, at least one passenger must boar

rn=n+1©A4,=0AB; =1, 1<i<n. (6)

This condition corresponds to the assumption thatelevator does not stop for nothing. In other
words, if the elevator does not stop to serve &elgl request, it must stop to serve a pickup retjue
which corresponds to at least one passenger.

The predicted OD passenger counts are relatedet@ribdicted boarding and alighting counts
through the flow conservation constraints:

Xij= B, Vi€N,
jl{EDea 7)
Xij=4;, VJjEN.
il(inea

The number of passengers in the elevator betweendties andi + 1, P;, is computed as follows:
P1=Bl, Pn—len' Pizpl'_l‘l‘Bi_Al', 1<l<n_1 (8)

The elevator capacity is always respected becdube domain of the variables.

The problem of finding the passenger counts foratles or OD pairs of an elevator trip such that
the predicted boarding and alighting counts arel@se as possible to the measured counts can be
seen as a network flow problem. In such a probligm,objective function is typically linear. A
linear objective function may, however, result isadution that produces small deviations between
most of the predicted and observed counts, bufpéedarge deviations for some counts. This is not
good since the difference between each observegi@ticted count should be small. Hence, we
consider the LS deviation between the predictedadrsgrved counts as the objective function:

D 4 = a? + (B = b2, ©)
IEN

An optimal solution to an ETODM estimation problesna vector of OD passenger counts,
(i,)) € A, that minimizes Eq. (9) with respect to the caaists in Eq. 2-8.
Note that the LS objective value in Eq. 9 is zentydf the problem is consistent. This is the case

2.h=.5 (10)

iEN JEN

if:

b; 2 |0Dy|,  VieN, (11)

G < ) (i—10DyD, VjEN, (12)

i|1si<j
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where0D;; = {(i,j) € N?|r; = i} is the set of OD pairs whose origin nodé, idestination node is

j and the delivery request to nodis registered at node Hence|0D;;| is the minimum number of
passengers that must be assigned from noal@odey. If the condition Eq. 11 does not hold, then
the assumption 2 is violated. The €Hb;, = {(i,k) € N?|r, =i,k # j} is the set of OD pairs
whose origin node i destination node & # j and the delivery request to nokles registered at
nodei. Hence, the condition in Eqg. 12 checks that tha& tmunt of passengers that can be assigned
to OD pairs ending to nodges equal to or greater than the count of passengko alight at nodg
taking into account the minimum count of passenteat must be assigned to all other destination
nodesk of origin nodes.

Similar consistency conditions were defined in Ipdit the corresponding BILS formulation is
based on different assumptions. It first uses tieeoved boarding and alighting counts to divide the
nodes to pickup and delivery nodes, and then theetlg requests to define the OD pairs. A node is
defined as a pickup nodekhf > 1, and as a delivery nodedf > 1. The disadvantage here is that
if, e.g., the observed boarding count is zero efvfre true count is positive, then the correspagdi
node will not be classified as a pickup node. rfaddition, the observed alighting count is zero,
then the corresponding stop will not be includethim formulation at all. In both cases, the number
of OD pairs will be smaller than it in reality shdu

Our formulation is based only on the stops andvdgjirequests, which means that all stops will
always be included in the formulation. Furthermaagording to Eq. 1, nodebetween the first and
the last node defines always an OD pair with atlesy such that; < i. This typically increases
the number of OD pairs compared to the BILS formolg which makes our approach more
conservative. The two approaches will yield the s@®t of optimal solutions, if the formulations
contain the same set of nodes, and they are centigt possible future improvement to the current
formulation would be to consider also the variasion elevator load. More specifically, if at any
stopi the arrival load is larger (resp. smaller) thaa tleparture load, thesy > 0 (resp.B; > 0)
while a constant load during the entire stop suggdsat no alighting (resp. boarding) occurred.
This would incorporate confidence of the measuréamand help to correct unexpected human
behavior. Note, however, that even if the arrivad was larger (resp. smaller) than the departure
load, it is still possible thak; (resp.4;) should be greater than zero. This is becausel@éaye
different weights. Hence, the load information ¢enused as an additional source of information
but there should be another method to count thedbaa and alighting passengers. A further
research subject is to study which one of the radtiere approaches gives better estimation results.
In this paper, we concentrate on studying the eftdcrandomization and fulfilling real time
elevator group control requirements with the pregploapproach.

In destination control, passengers use numericdasy/fo register destination calls at the elevator
lobbies. Each destination call combines a pickug ardelivery request, and if every passenger
would always register a destination call, then @& passenger counts, i.e., ETODMs, would
trivially be defined by the number of destinaticalle. However, it has been observed that people
move often in batches and typically only one pagserof the batch registers the call to the
destination [23]. It has also been observed thatetimes people abuse the destination control by
giving several destination calls. Hence, the dasitm calls are not in general a reliable way to
estimate the ETODMs. They could, however, alsodsslas an additional source of information.

To illustrate our formulation, consider the followji instancen = 4, C = 20, b; = 10, b, =1,
b;=b,=0,a,=a,=0,a;=a, =6, andr, =r, =5, 3 =1, = 1. Since the condition (10)
does not hold, the problem is inconsistent. Figghbws the corresponding ETODM estimation
problem with the predicted OD passenger couf)is i,j € A, and the predicted boarding and
alighting countsB;, A4; € [0,C], i = 1,2,3,4.



120 4™ Symposium on Lift & Escalator Technologies

Figure 1 Example ETODM estimation problem

SEARCH ALGORITHMS

We consider a complete standard backtracking seenath consists of a depth-first traversal of the
search tree. At a node of the search tree, an tanitisted variable is selected and the node is
extended so that the resulting new branches otlteohode represent alternative choices that may
have to be examined in order to find a solutiore Bhanching strategy determines the next variable
to be instantiated, and the order in which the esluom its domain are selected.

Branching Strategy and Candidate Algorithms. A branching strategy determines the next
variable to be instantiated (variable selectiony ¢he next value the variable is assigned from its
current domain (value selection). The branchingtsgy strongly impacts the performance of the
search by improving the detection of solutions faitures for unsatisfiable problems) when
building the search tree.

Here we consider the following variable selectitnategiesdom (D) selects the variable whose
domain is minimaldom/wdeg(W) selects the variable that minimizes the qumtigf its domain
size over its weighted degrdex (L) selects a variable according to lexicogramhigering;random
(R) selects a variable randomly [24]. We considely dwo classical value selection strategies:
minVal (M) selects the smallest value arahdVal (R) selects a value randomly. There is also a
third classical value selection strateggaxVal which selects the largest value. However, our
numerical experiments indicated that it is lesgidit thanminVal and thus, is not considered in
this study. A candidate algorithm (CA) is obtairt®dcombining a variable and a value selection
strategy. For example, DM usésmfor variable selection amdinValfor value selection.

Optimization Procedure. Most CP tools use by default a stand@adownbranch-and-bound
algorithm which maintains a lower bound, and an upper boundp, on the objective value.
Whenub < lb, the sub tree can be pruned because it cannohinoatbetter solution. Here, the
problem is solved using thettom-upprocedure. The procedure starts with a lower bplinds a
target upper bound which is incremented by one wmiil the problem becomes feasible. The first
solution found by théottom-upprocedure is proven optimal. If (by luck) the fiiselution found by
thetop-downprocedure is optimal, the optimality has to bk gtoven.

Let opt denote the optimal objective value. Th®ttom-up procedure solvesopt — b
unsatisfiable problems and only one satisfiabldj@mm before finding an optimal solution. Hence,
the number of problems that has to be solved ealinvith respect téh. Most bottom-upvariants
reduce from a linear to a logarithmic number ofat®ns in the worst-case. Thep-down
procedure is a good candidateit — [b is large or the goal is to find good soutions glyicln our
case, the boarding and alighting counts are ofteasored without errors, and if an error is made, it
rarely exceeds one unit. This means that the optiljactive value is often equal or close to zero,
and thus, thdéottom-upprocedure with the initial lower bound equal toqzdb = 0, is a good
candidate.

NUMERICAL EXPERIMENTS

Simulation Process. We simulated lunch hour traffic in a 25-storeyiagf building using the

Building Traffic Simulator (BTS) [25]. The simulati time was 15 minutes. In a typical lunch hour
traffic pattern, which was used also in this stuithy proportion of incoming, outgoing and inter-
floor traffic is 40%, 40% and 20%, respectively. \WW&ed a conventional group of eight elevators
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with the capacity of 21 passengers, and adjustedrdific intensity so that the handling capacity
(HC) of the elevator group was insufficient. Whére tHC is insufficient, the elevators become
often fully loaded, and thus, make many stops duone up or down trip. This increases the
number of difficult problem instances. Becausepiiactice, elevator groups are designed to have
enough HC, the problems occurring in reality akelli to be less complex.

Every simulation produces data, e.g., all passanged their origin and destination floors that
are used to construct the true BODM. An elememiéntrue BODM corresponds to the true number
of passengers from an origin to a destination. Sihaulation data are also used to construct the
ETODM estimation problem instances. By solvingtah ETODM estimation problem instances,
and adding up the estimation results, we obtairestienated BODM.

To obtain several sets of test data, we repeatedithulation 10 times with different seeds. The
resulting 10 sets of problem instances contain onhsistent instances. To obtain also inconsistent
instances, we assumed a measuring accuracy of @d%raated inconsistent problem instances
from the consistent problem instances by removimg mpassenger from each boarding and alighting
count with 10% probability. Passengers were remareti not added since experience has shown
that, at least with an electronic load weighingideythe observed count is typically one passenger
less than the true count, if an error occurs. Tesulted in 10 new sets of problem instances
containing in total 165 inconsistent instances,clvhis about 30% of the total of 558 instances in
the 10 new sets. This shows that since an elevwaforconsists of several stops, the measuring
accuracy per stop must be high in order to incrélasenumber of consistent instances which are
easier and faster to solve. Although the 10 new sentain also consistent instances, we call them
inconsistent to separate them from the sets cantaonly consistent instances.

BODM Construction. The BODM of a given time interval or simulatios constructed by
adding up the ETODMs estimated during that interval ETODM estimation problem may,
however, have several optimal solutions. We consitie first 10X, K = 0,1,2,3,%, optimal
solutions per instance and select the final saluéie the average of the computed solutions.*The
sign refers to all optimal solutions. Because @&f different branching heuristics, the different CAs
will not give the same set of first0¥ optimal solutions, and thus, the final solutiomdl be
different. This means that the BODMs estimated wiififierent CAs will be different except for
K =+. When we select the final solution to a problerstance as the average of the computed
optimal solutions to the instance, we obtain alwayly one BODM per simulation.

Another reason for selecting the average is tlabnly some of the optimal solutions are
available, it describes the differences betweenGBAs with respect to the characteristics of these
solutions. Hence, the average makes it possibterare the CAs with respect to BODM quality.
Note that the average of the computed optimal mwistis not in general the same as the continuous
solution to the instance.

BODM Quality. The quality of an estimated BODM is evaluatedeldaen the total squared
deviation. LetX/*¢ andX{** denote the true and the estimated passenger froamtorigin i to

destinatiory in the true and the estimated BODM, respectivatyl letN denote the total number of
OD pairs in the building. The total squared dewiatis the sum of the OD passenger count
deviations between the estimated and the true BODM:

Z Z (Xest Xtrue ) (13)
iEN jEN

Hence, the total squared deviation measures thenpity of the estimated BODM to the true
BODM with respect to the OD passenger counts.

EXPERIMENTAL RESULTS

All the experiments were conducted on a Linux maetwith 32 GB of RAM and a Intel Core i7
processor (6 cores -- 3.20GHz). The implementai®rbased onchoco (http://choco.mines-
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nantes.fr). We consider the deterministic algorgshBM, WM and LM. From the randomized
algorithms, we consider only DR and RR for the o@asexplained in the following sections.

A randomized search typically gives a different gebptimal solutions per problem instance
when it is solved several times. Hence, to study akerage performance of the randomized
algorithms, we ran DR 50 times for consistent amsbmsistent instances, and RR 50 times for
consistent instances, but only 5 times for incdesisinstances because of much longer solving
times. One run consists of solving all the 558anses corresponding to the 10 BODMs once, and
thus, each run produces 10 estimated BODMs.

Number of Optimal Solutions. Table 1 shows the distribution of the number ofiropl
solutions among the 558 consistent and inconsigtaitlem instances. It suggests that the search
space is typically larger for the inconsistent amgies. Table 2 gives the distribution of the LS
objective value at the optimal solutions to theomgistent problem instances. The distribution
shows that the optimum of an inconsistent instaiacely exceeds one, which confirms that the
bottom-up procedure with the initial lower bound equal taazdb = 0, is a good choice for
optimization.

Table 1 Distribution of the number of optimal solutions

No. sols. =1 <1 < 102 <103 < 104 > 10
Consistent 405 84 35 19 13 2
Inconsistent 320 107 75 27 17 12

Table 2 Distribution of the L S objective value

Objective value 0 1 2 3
Count 393 136 27 2

Solving Time. Lett denote the solving time of a given problem ins¢éafar a given value ok,

and lett, be the minimum solving time among the CAs forittetance and the value Bt Table 3
shows the geometric mean, geometric standard dmviahd the maximum af/t, computed over

all inconsistent instances and valueskofThe geometric mean and standard deviation aré use
since the arithmetic counterparts are not suitédrienormalized values [26]. These results are not
shown for consistent instances since the differermween the CAs were negligible. It can be
concluded that DM is usually faster and more stabé& WM and LM. Hencedom is the best
deterministic variable selection strategy with extgo solving time.

Table 3 Performance of the deter ministic CAswith respect to solving time

DM WM LM
Geom. mean 1.005 1.036 1.044
Geom. std 1.039 1.050 1.154
Max 2.562 3.710 11.684

Fig. 2 shows the percentage of inconsistent insgsolved within a given time for four selected
CAs, namely, DMO, DR1, RR2 and DMThe last character corresponds to a given vdiué &or
example, the graph of DMO shows that DM can find finst solution to more than 95% of the
inconsistent instances in less than 0.2 secondisoddh not shown, all other similar graphs for the
deterministic CAs stay within the graphs of DMO ddlll«. As shown in the upper right corner of
the figure, RR1 takes more time for some instartbeas DM, which means that randomized
variable and value selection is not a good stratsigge we can find all solutions with a
deterministic algorithm faster. There are, howeadew problem instances to which it takes clearly
a longer time to find all solutions as shown by tgraph of DM:. DR2 produces an acceptable
increase in solving time, but although not showthmfigure, the solving times of DR3 become too
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long. It can be concluded that DR should be preterover DM forK = 0,1,2, if it increases
BODM quality.

time [s]
Figure 2 Cumulative distribution of solving timefor four selected CAs

In [4], the solving time of the BILS algorithm imtling all optimal solutions to four consistent
and inconsistent example problem instances is regooffable 4 shows these results also for DM
which is a little bit slower except for the incosteint instances 3 and 4 for which DM is much
faster. In general, the solving time of DM is adedye considering a real application although for
the inconsistent instance 3, the 0.5 seconds Isnfomewhat exceeded. The example instances
were formulated using the BILS formulation. WithetiCP formulation, the number of optimal
solutions to the inconsistent instances 2, 3, anaretl 44, 14091 and 155, respectively. This
illustrates the differences between the two forrioie.

Table4 Comparison of DM and BILS

Consistent Inconsistent

Instance 1 2 3 4 1 2 3 4

DM solving time [s] 0.13 0.14 0.27 0.2 0.14 0.18 0.66 0.26

BILS solving time [s] | 0.00 0.00 0.13 0.08 0.00 0.00 2.24 1175

No. sols. 1 5 2016 9 5 29 10358 78

Total Squared Deviation. Fig. 3 shows the total squared deviation of teehinistic CAs for
inconsistent instances as a histogram. The totahreq deviation for each BODM is computed
based on Eg. 13, and the results shown in thedigue obtained by summing up these deviations.
The CAs are grouped by the paraméfelk = 0,1,2,3, and the horizontal line is the total squared
deviation for all optimal solutions, which is thanse for all CAs. The corresponding histogram for
the consistent instances is not shown since itdaactly the same except that the total squared
deviations are smaller. The main result is thatifig multiple optimal solutions reduces the
deviation. In addition, DM and WM are almost equévd and LM results always in the greatest
deviation, which again makes DR a better choica W& and LR.

Table 5 shows the average total squared deviafi@Roand DM for the inconsistent instances.
It can be concluded that DR is on average better BM. However, if we consider the 0.5 seconds
limit, then DM is a better choice since based og. 2, DM« can solve approximately as many
problem instances as DR2 within this limit and B@DM quality of DM3 is already better than
that of DR2. For shorter time limits, DR is a betthoice.

Number of Passengers. For inconsistent instances, the total number adspngers in the
estimated BODM is typically less than in the tru®@@M. The reason for the underestimation is
naturally that the inconsistent instances weretetehy removing passengers from the true counts.
However, underestimation is an issue also in feaitd, as shown in Table 6, the amount of
underestimation depends on the CA. The amount dém@stimation is obtained by subtracting the
total number of passengers in the true BODM fromtttal number of passengers in the estimated
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BODM for each of the 10 BODMs, and then adding hese differences. Note that also
overestimation might be an issue in practice batwéh underestimation, this depends on the
measuring accuracy and the used measuring devicmathod.

1 10 100 1000

#solutions

Figure 3 Total squared deviation of the deter ministic CAs
Table5 Total squared deviation of DR and DM

K 0 1 2 3
DR 1179.0 762.1 653.4 599.2
DM 1255.0 843.5 676.9 616.5

Table 6 shows that both randomized CAs signifigantiduce the underestimation, especially
when only one optimal solution per instance is cote@. Even the worst cases (max) are better
than the results obtained with DM. DR results oerage in smaller underestimation than RR.
Furthermore, the more optimal solutions are congpthe more accurate and the more stable is the
estimated BODM. These results support the selectid@R over DM.

Table 6 Underestimation of the number of passengers

DM DR RR
K Avg Std Min Max Avg Std Min Max
0 175.0 16.2 6.0 10.0 30.0 22.6 8.9 14/0 33.0
1 79.3 35.1 1.6 32.1 38.8 38.4 2. 36/1 40.9
2 58.7 39.1 0.6 38.0 40.9 40.9 0.9 39,8 42.1
3 50.6 40.6 0.3 40.1 41.3 42.0 0.5 41)5 42.6

CONCLUSIONS

We presented a constraint programming (CP) fornwrdaftor the elevator trip origin-destination
matrix (ETODM) estimation problem. An elevator tdpnsists of successive stops in one direction
of travel with passengers inside the elevator, #rel estimated OD matrix contains the OD
passenger counts for the OD pairs of the trip. ER®DMs estimated for a given time interval are
added up to construct the building OD matrix (BODM)that interval. The passenger traffic in a
building can be learned by combining the BODMShaf same day or time interval, and usually day
of week. These matrices can be used to make faseahsut future passengers. The forecasts are
needed in elevator dispatching to improve dispatghliecisions with respect to future passengers.

An ETODM estimation problem may have many optin@lsons, and any of these solutions
may correspond to what happened in reality. Toiobtzbust forecasts, the learned BODMs should
describe the possible realizations of the passengiic as well as possible. This can be achieved
by finding all or several optimal solutions to egmbblem instance and selecting the final solution,
e.g., randomly or as the average of the optimaitsols.
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We compared three deterministic and two randomi@Bdalgorithms in finding a predefined
number of optimal solutions to the ETODM estimatiproblem. Several test problems were
obtained by simulations of lunch hour traffic intygical multi-storey office building. The traffic
intensity was adjusted above the handling capatitiie simulated elevator group. This resulted in
complex problem instances that enable robust pedonce testing and comparison of the
algorithms.

The comparison of the algorithms was based on rgglirme and BODM quality which affects
the reliability of the passenger traffic forecadtse results suggest that randomization and maltipl
optimal solutions is a good compromise betweeniggltime and quality. For very complex
problem instances, the fastest CP algorithm tumgdo be even faster than the previous estimation
approaches and algorithms. In addition, the pragpcggproach fulfils real time elevator group
control requirements for solving ETODM estimatiaolgems.
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