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Abstract. We present a constraint programming formulation for the elevator trip origin-destination 
matrix estimation problem, and study different deterministic and randomized algorithms to solve 
the problem. An elevator trip consists of successive stops in one direction of travel with passengers 
inside the elevator. It can be defined as a directed network, where the nodes correspond to the stops 
on the trip, and the arcs to the possible origins and destinations of the passengers. The goal is to 
estimate the count of passengers for the origin-destination pairs of every elevator trip occurring in a 
building. These counts can be used to make passenger traffic forecasts which, in turn, can be used in 
elevator dispatching to reduce uncertainties related to future passengers. The results show that 
randomized search improves the quality of estimation results. In addition, the proposed approach 
satisfies real time elevator group control requirements for estimating elevator trip origin-destination 
matrices. 

INTRODUCTION 

Modern group controls typically plan elevator routes based on existing calls [1,2]. At any given 
moment, however, a passenger may arrive to an elevator lobby and give a new call which requires 
the changing of previously defined routes, if they are no longer optimal. By making forecasts of 
future passengers, the group control can avoid such unexpected route changes and improve 
passenger service level [3]. The forecasts should be based on complete information about the 
passenger traffic, i.e., on passenger journeys. A passenger journey is the journey of one passenger 
from an origin floor to a destination floor. The problem is that, especially during heavy traffic, the 
passenger journeys cannot be uniquely determined. They can, however, be estimated by solving the 
elevator trip origin-destination matrix (ETODM) estimation problem [4]. 

An elevator trip to up or down direction starts when passengers board an empty elevator and 
ends to a stop where the elevator becomes empty again. The passengers who board the elevator 
register calls that define their destinations, and the OD pairs of the trip. The boarding and alighting 
passenger counts can be obtained, e.g., by measuring stepwise changes in the load of an electronic 
load weighing device [5]. An estimated ETODM contains the OD passenger counts, i.e., the 
passenger journeys, for the OD pairs of the trip. The ETODMs estimated for a given time interval 
are added up to construct a building OD matrix (BODM) that describes the passenger traffic 
between every pair of floors in the building during that interval. The length of the time interval 
depends largely on the traffic intensity, but a typical interval is at least five and at most 15 minutes 
[6]. To learn the passenger traffic in the building, the BODMs of the same time of day or time 
interval, and usually day of week, are combined using, e.g., exponential smoothing [5]. The learned 
BODMs can be used to make forecasts about future passengers, namely, when and at which floors 
new passengers will register new calls, what is the number of passengers waiting behind the new 
and existing calls, and what are their destinations. 

An elevator trip is analogous to a single transit route, e.g., a bus line, where there is only one 
route connecting any OD pair, and usually counts of the boarding and alighting passengers are 
collected on all stops on the route [7]. There are many methods for estimating the OD matrix for a 
single transit route. If the observed passenger counts are consistent, then a typical objective is to 
minimize a distance measure between the predicted and a target OD matrix subject to the so called 
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flow conservation constraints. They simply require that passengers travelling on the route do not 
disappear or multiply. The target OD matrix is usually based on historical data or a survey. A 
popular distance measure is the information minimizing function [8]. Similar estimators are 
obtained with the iterative proportional fitting method [7,9,10,11], and recursive methods 
[12,13,14]. Other types of estimators are obtained with constrained generalized least squares 
(CGLS) and constrained maximum likelihood approaches [11]. If the observed boarding and 
alighting passenger counts are not consistent, then a distance measure between the predicted and 
observed counts should also be minimized. Popular approaches are the maximum likelihood, the 
Bayesian and the CGLS method [15,16,17,18,19]. 

A single transit route is usually defined in advance and remains as such for long periods of time. 
This means that it is possible to collect many counts on the same route during a given time period, 
e.g., a rush hour, and use these counts to estimate average passenger counts for the OD pairs of the 
route. An elevator trip is request driven which means that there may not be two similar elevator 
trips even within a day. In addition, every elevator trip has its own set of OD pairs, and boarding 
and alighting counts. This is why we need to estimate a separate OD matrix for each elevator trip. 
Because there cannot be partial passengers, only integer solutions are acceptable. If the requests and 
the measured counts affect the domain of the predicted OD passenger counts then, unlike in a single 
transit route, they must be taken into account when defining whether an ETODM estimation 
problem is consistent or not. 

In [4], the ETODM estimation problem was formulated as a box-constrained integer least 
squares (BILS) problem and algorithms for finding all solutions to the problem were presented. 
When all solutions are available and one is selected every time, e.g., randomly or as the average of 
the solutions, the BODMs are not affected by the algorithm used in solving the problem. In the long 
term, this strategy results in BODMs that model better the possible realizations of the passenger 
traffic, and enable robust passenger traffic forecasting in elevator dispatching. In [20], an ETODM 
was estimated by solving a succession of positive inverse problems. Both of the above methods can 
solve inconsistent problems, but the latter finds only a single solution to the problem. This is a not a 
good property when the goal is to construct BODMs for passenger traffic forecasting. In [21], the 
ETODM estimation problem was formulated as a linear programming (LP) problem. The presented 
approach, however, can be used only for consistent problems. 

For implementing an ETODM estimation algorithm in a real elevator group control application, 
the algorithm must be fast to reduce CPU load, and to have the most recent information about the 
passenger traffic all the time. The BILS approach is faster than the LP approach [4,21]. However, 
since the ETODM estimation problem is in general NP-hard, all solutions to sufficiently complex 
problems cannot be found within a reasonable time which in a real application can be defined to be 
at most 0.5 seconds. 

We formulate the ETODM estimation problem as a constraint optimization problem (COP) [22]. 
The formulation is based on elevator movements, e.g., stops, service requests, e.g., landing and car 
calls, and counts of boarding and alighting passengers. In addition to respecting a set of constraints, 
a solution to the problem is optimal with respect to a predefined distance measure between the 
predicted and observed passenger counts. We selected the least squares (LS) objective function 
because it favors solutions where the difference between all of the predicted and observed counts is 
small, which is reasonable considering a real application. 

One advantage of the CP approach compared to the previous approaches is that both 
deterministic and randomized optimization procedures, resulting in a single or multiple optimal 
solutions, can be easily implemented. Intuitively, if only some (instead of all) of the optimal 
solutions can be computed within a real time limit, then a randomized search should result in 
BODMs that describe better the possible realizations of the passenger traffic, i.e., BODMs of better 
quality. The reason is that a deterministic search will always favor particular solutions. By using 
different deterministic and randomized candidate algorithms (CA), we study the effect of 
randomization on BODM quality. BODM quality is measured based on the total squared deviation 
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between the estimated and the true BODM. In addition, we compare the different CAs with respect 
to solving time. 

CONSTRAINT PROGRAMMING FORMULATION 

We define an elevator trip as a directed network of nodes � = �1,2, … , �	, and arcs 
 defined by 
OD pairs (�, ), �,  ∈ �. The node � corresponds to the �th stop on the elevator trip. Let �� be the 
node at which a delivery request to the node � ∈ �, �� < �,  is registered. If no delivery requests are 
registered to node �, then �� = � + 1. Let �� and �� denote the measured count of passengers who 
board and alight at node � ∈ �, respectively. The elevator capacity, expressed as number of 
passengers, is denoted with �. 

We assume that: 
1. At any time, there are less than � passengers in the elevator. 
2. At least one passenger boards at node �� ≠ � + 1 and alights at node �. 
3. Passengers do not alight at a node without a delivery request. 
4. A passenger who boards at node � < ��, i.e., before the delivery request to node  is 

registered, does not alight at node . 
The assumptions 2 and 3 imply that we trust the delivery requests. The fourth assumption means 
that the possible destinations of a passenger are defined by the delivery requests that are registered 
before or at the node where the passenger boards the elevator, which is usually the case in practice. 
This eliminates some OD pairs, and thus, an elevator trip often includes a smaller number of OD 
pairs than a single transit route where typically any node � forms an OD pair with any other node , 
� < . 

The set of arcs 
 is defined as: 
 


 = �(�, ) ∈ ��|� <  ∧ � ≥ ���. (1) 
 
Let !� ∈ "0, �$ and 
� ∈ "0, �$ denote the predicted count of passengers who board and alight the 
elevator at node � ∈ �, respectively. Let %� ∈ "1, �$, � = 1, … , � − 1, denote the number of 
passengers in the elevator between the nodes � and � + 1. Finally, let '�� ∈ "0, �$ denote the 
predicted passenger count along the arc or OD pair (�, ) ∈ 
, i.e., the passenger count from origin � 
to destination , that we want to estimate. 

The predicted boarding and alighting counts must be consistent: 
 

( !�
�∈)

= ( 
�
�∈)

. (2) 

 
Three formal rules for separating successive elevator trips from each other were presented in [4]. In 
general, an elevator trip starts at a stop where passengers board an empty elevator and ends to a stop 
where the elevator becomes empty again. Hence, at the first node, the predicted boarding count 
must be at least one and the alighting count zero, and at the last node the reverse must hold: 
 


* = 0,   !* ≥ 1,   
+ ≥ 1,   !+ = 0. (3) 
 
At every node between the first and the last node, at least one passenger either boards or alights: 
 


� +  !� ≥ 1, 1 < � < �. (4) 
 
By taking into account the assumptions 2 and 3, the constraint in Eq. 4 can be more accurately 
stated as follows. According to assumption 2, at least one passenger boards at node �� ≠ � + 1 and 
alights at node �: 
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�� ≠ � + 1 ⇔ '-.,� ≥ 1, 1 < � ≤ �,   (5) 

 
and according to assumption 3, passengers cannot alight at a node to which there is no delivery 
request, and thus, at least one passenger must board: 
 

�� = � + 1 ⇔ 
� = 0 ∧ !� ≥ 1, 1 < � < �. (6) 
 
This condition corresponds to the assumption that the elevator does not stop for nothing. In other 
words, if the elevator does not stop to serve a delivery request, it must stop to serve a pickup request 
which corresponds to at least one passenger. 

The predicted OD passenger counts are related to the predicted boarding and alighting counts 
through the flow conservation constraints: 
 

( '��
�|(�,�)∈0

=  !�, ∀ � ∈ �, 

( '��
�|(�,�)∈0

=  
� , ∀  ∈ �. 
(7) 

 
The number of passengers in the elevator between the nodes � and � + 1, %�, is computed as follows:   
 

%* =  !*, %+2* = 
+, %� = %�2* + !� − 
�, 1 < � < � − 1. (8) 
 
The elevator capacity is always respected because of the domain of the variables. 

The problem of finding the passenger counts for the arcs or OD pairs of an elevator trip such that 
the predicted boarding and alighting counts are as close as possible to the measured counts can be 
seen as a network flow problem. In such a problem, the objective function is typically linear. A 
linear objective function may, however, result in a solution that produces small deviations between 
most of the predicted and observed counts, but accepts large deviations for some counts. This is not 
good since the difference between each observed and predicted count should be small. Hence, we 
consider the LS deviation between the predicted and observed counts as the objective function: 
 

("(
� − ��)� + (!� − ��)�$
�∈)

. (9) 

 
An optimal solution to an ETODM estimation problem is a vector of OD passenger counts '��, 
(�, ) ∈ 
, that minimizes Eq. (9) with respect to the constraints in Eq. 2-8.  

Note that the LS objective value in Eq. 9 is zero only if the problem is consistent. This is the case 
if: 
 

( �� =
�∈)

( ��
�∈)

, 
 

(10) 

�� ≥ 345��3, ∀ � ∈ �, 
 

(11) 

�� ≤ ( (�� − |45�6|)
�|*7�8�

, ∀  ∈ �, (12) 
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where 45�� = �(�, ) ∈ ��|�� = �� is the set of OD pairs whose origin node is �, destination node is 
 and the delivery request to node  is registered at node �. Hence, 345��3 is the minimum number of 
passengers that must be assigned from node � to nodes . If the condition Eq. 11 does not hold, then 
the assumption 2 is violated. The set 45�6 = �(�, 9) ∈ ��|�6 = �, 9 ≠ 	 is the set of OD pairs 
whose origin node is �, destination node is 9 ≠  and the delivery request to node 9 is registered at 
node �. Hence, the condition in Eq. 12 checks that the total count of passengers that can be assigned 
to OD pairs ending to node  is equal to or greater than the count of passengers who alight at node , 
taking into account the minimum count of passengers that must be assigned to all other destination 
nodes 9 of origin nodes �. 

Similar consistency conditions were defined in [4] but the corresponding BILS formulation is 
based on different assumptions. It first uses the observed boarding and alighting counts to divide the 
nodes to pickup and delivery nodes, and then the delivery requests to define the OD pairs. A node is 
defined as a pickup node if �� ≥ 1, and as a delivery node if �� ≥ 1. The disadvantage here is that 
if, e.g., the observed boarding count is zero even if the true count is positive, then the corresponding 
node will not be classified as a pickup node. If, in addition, the observed alighting count is zero, 
then the corresponding stop will not be included in the formulation at all. In both cases, the number 
of OD pairs will be smaller than it in reality should. 

Our formulation is based only on the stops and delivery requests, which means that all stops will 
always be included in the formulation. Furthermore, according to Eq. 1, node � between the first and 
the last node defines always an OD pair with all nodes  such that �� < �. This typically increases 
the number of OD pairs compared to the BILS formulation, which makes our approach more 
conservative. The two approaches will yield the same set of optimal solutions, if the formulations 
contain the same set of nodes, and they are consistent. A possible future improvement to the current 
formulation would be to consider also the variations in elevator load. More specifically, if at any 
stop � the arrival load is larger (resp. smaller) than the departure load, then 
� > 0 (resp. !� > 0) 
while a constant load during the entire stop suggests that no alighting (resp. boarding) occurred. 
This would incorporate confidence of the measurements and help to correct unexpected human 
behavior. Note, however, that even if the arrival load was larger (resp. smaller) than the departure 
load, it is still possible that !� (resp. 
�) should be greater than zero. This is because people have 
different weights. Hence, the load information can be used as an additional source of information 
but there should be another method to count the boarding and alighting passengers. A further 
research subject is to study which one of the alternative approaches gives better estimation results. 
In this paper, we concentrate on studying the effect of randomization and fulfilling real time 
elevator group control requirements with the proposed approach. 

In destination control, passengers use numeric keypads to register destination calls at the elevator 
lobbies. Each destination call combines a pickup and a delivery request, and if every passenger 
would always register a destination call, then the OD passenger counts, i.e., ETODMs, would 
trivially be defined by the number of destination calls. However, it has been observed that people 
move often in batches and typically only one passenger of the batch registers the call to the 
destination [23]. It has also been observed that sometimes people abuse the destination control by 
giving several destination calls. Hence, the destination calls are not in general a reliable way to 
estimate the ETODMs. They could, however, also be used as an additional source of information.  

To illustrate our formulation, consider the following instance: � = 4, � = 20, �* = 10, �� = 1, 
�< = �= = 0, �* = �� = 0, �< = �= = 6, and �* = �� = 5, �< = �= = 1. Since the condition (10) 
does not hold, the problem is inconsistent. Fig. 1 shows the corresponding ETODM estimation 
problem with the predicted OD passenger counts '��, �,  ∈ 
, and the predicted boarding and 
alighting counts, !�, 
� ∈ "0, �$, � = 1,2,3,4. 
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Figure 1 Example ETODM estimation problem 

SEARCH ALGORITHMS 

We consider a complete standard backtracking search which consists of a depth-first traversal of the 
search tree. At a node of the search tree, an uninstantiated variable is selected and the node is 
extended so that the resulting new branches out of the node represent alternative choices that may 
have to be examined in order to find a solution. The branching strategy determines the next variable 
to be instantiated, and the order in which the values from its domain are selected. 

Branching Strategy and Candidate Algorithms. A branching strategy determines the next 
variable to be instantiated (variable selection), and the next value the variable is assigned from its 
current domain (value selection). The branching strategy strongly impacts the performance of the 
search by improving the detection of solutions (or failures for unsatisfiable problems) when 
building the search tree.  

Here we consider the following variable selection strategies: dom (D) selects the variable whose 
domain is minimal; dom/wdeg (W) selects the variable that minimizes the quotient of its domain 
size over its weighted degree; lex (L) selects a variable according to lexicographic ordering; random 
(R) selects a variable randomly [24]. We consider only two classical value selection strategies: 
minVal (M) selects the smallest value and randVal (R) selects a value randomly. There is also a 
third classical value selection strategy, maxVal, which selects the largest value. However, our 
numerical experiments indicated that it is less efficient than minVal, and thus, is not considered in 
this study. A candidate algorithm (CA) is obtained by combining a variable and a value selection 
strategy. For example, DM uses dom for variable selection and minVal for value selection. 

Optimization Procedure. Most CP tools use by default a standard top-down branch-and-bound 
algorithm which  maintains a lower bound, A�, and an upper bound, B�, on the objective value. 
When B� ≤ A�, the sub tree can be pruned because it cannot contain a better solution. Here, the 
problem is solved using the bottom-up procedure. The procedure starts with a lower bound, A�, as a 
target upper bound which is incremented by one unit until the problem becomes feasible. The first 
solution found by the bottom-up procedure is proven optimal. If (by luck) the first solution found by 
the top-down procedure is optimal, the optimality has to be still proven.  

Let CDE denote the optimal objective value. The bottom-up procedure solves CDE − A� 
unsatisfiable problems and only one satisfiable problem before finding an optimal solution.  Hence, 
the number of problems that has to be solved is linear with respect to A�. Most bottom-up variants 
reduce from a linear to a logarithmic number of iterations in the worst-case. The top-down 
procedure is a good candidate if CDE − A� is large or the goal is to find good soutions quickly. In our 
case, the boarding and alighting counts are often measured without errors, and if an error is made, it 
rarely exceeds one unit. This means that the optimal objective value is often equal or close to zero, 
and thus, the bottom-up procedure with the initial lower bound equal to zero, A� = 0, is a good 
candidate. 

NUMERICAL EXPERIMENTS 

Simulation Process. We simulated lunch hour traffic in a 25-storey office building using the 
Building Traffic Simulator (BTS) [25]. The simulation time was 15 minutes. In a typical lunch hour 
traffic pattern, which was used also in this study, the proportion of incoming, outgoing and inter-
floor traffic is 40%, 40% and 20%, respectively. We used a conventional group of eight elevators 
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with the capacity of 21 passengers, and adjusted the traffic intensity so that the handling capacity 
(HC) of the elevator group was insufficient. When the HC is insufficient, the elevators become 
often fully loaded, and thus, make many stops during one up or down trip. This increases the 
number of difficult problem instances. Because, in practice, elevator groups are designed to have 
enough HC, the problems occurring in reality are likely to be less complex. 

Every simulation produces data, e.g., all passengers and their origin and destination floors that 
are used to construct the true BODM. An element in the true BODM corresponds to the true number 
of passengers from an origin to a destination. The simulation data are also used to construct the 
ETODM estimation problem instances. By solving all the ETODM estimation problem instances, 
and adding up the estimation results, we obtain the estimated BODM. 

To obtain several sets of test data, we repeated the simulation 10 times with different seeds. The 
resulting 10 sets of problem instances contain only consistent instances. To obtain also inconsistent 
instances, we assumed a measuring accuracy of 90% and created inconsistent problem instances 
from the consistent problem instances by removing one passenger from each boarding and alighting 
count with 10% probability. Passengers were removed and not added since experience has shown 
that, at least with an electronic load weighing device, the observed count is typically one passenger 
less than the true count, if an error occurs. This resulted in 10 new sets of problem instances 
containing in total 165 inconsistent instances, which is about 30% of the total of 558 instances in 
the 10 new sets. This shows that since an elevator trip consists of several stops, the measuring 
accuracy per stop must be high in order to increase the number of consistent instances which are 
easier and faster to solve. Although the 10 new sets contain also consistent instances, we call them 
inconsistent to separate them from the sets containing only consistent instances. 

BODM Construction. The BODM of a given time interval or simulation is constructed by 
adding up the ETODMs estimated during that interval. An ETODM estimation problem may, 
however, have several optimal solutions. We consider the first 10F, G = 0,1,2,3,∗, optimal 
solutions per instance and select the final solution as the average of the computed solutions. The ∗ 
sign refers to all optimal solutions. Because of the different branching heuristics, the different CAs 
will not give the same set of first 10F optimal solutions,  and thus, the final solutions will be 
different. This means that the BODMs estimated with different CAs will be different except for 
G =∗. When we select the final solution to a problem instance as the average of the computed 
optimal solutions to the instance, we obtain always only one BODM per simulation.  

Another reason for selecting the average is that, if only some of the optimal solutions are 
available, it describes the differences between the CAs with respect to the characteristics of these 
solutions. Hence, the average makes it possible to compare the CAs with respect to BODM quality. 
Note that the average of the computed optimal solutions is not in general the same as the continuous 
solution to the instance. 

BODM Quality. The quality of an estimated BODM is evaluated based on the total squared 
deviation. Let '��I-JK and '��KLI denote the true and the estimated passenger count from origin � to 
destination  in the true and the estimated BODM, respectively, and let � denote the total number of 
OD pairs in the building. The total squared deviation is the sum of the OD passenger count 
deviations between the estimated and the true BODM: 
 

( (M'��KLI − '��I-JKN�

�∈)�∈)
. (13) 

 
Hence, the total squared deviation measures the proximity of the estimated BODM to the true 
BODM with respect to the OD passenger counts. 

EXPERIMENTAL RESULTS 

All the experiments were conducted on a Linux machine with 32 GB of RAM and a Intel Core i7 
processor (6 cores -- 3.20GHz). The implementation is based on choco (http://choco.mines-
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nantes.fr). We consider the deterministic algorithms DM, WM and LM. From the randomized 
algorithms, we consider only DR and RR for the reasons explained in the following sections. 

A randomized search typically gives a different set of optimal solutions per problem instance 
when it is solved several times. Hence, to study the average performance of the randomized 
algorithms, we ran DR 50 times for consistent and inconsistent instances, and RR 50 times for 
consistent instances, but only 5 times for inconsistent instances because of much longer solving 
times. One run consists of solving all the 558 instances corresponding to the 10 BODMs once, and 
thus, each run produces 10 estimated BODMs. 

Number of Optimal Solutions. Table 1 shows the distribution of the number of optimal 
solutions among the 558 consistent and inconsistent problem instances. It suggests that the search 
space is typically larger for the inconsistent instances. Table 2 gives the distribution of the LS 
objective value at the optimal solutions to the inconsistent problem instances. The distribution 
shows that the optimum of an inconsistent instance rarely exceeds one, which confirms that the 
bottom-up procedure with the initial lower bound equal to zero, A� = 0, is a good choice for 
optimization. 

Table 1 Distribution of the number of optimal solutions 

No. sols. = 1 ≤ 1 ≤ 10� ≤ 10< ≤ 10= > 10= 
Consistent 405 84 35 19 13 2 
Inconsistent 320 107 75 27 17 12 

 

Table 2 Distribution of the LS objective value 

Objective value 0 1 2 3 
Count 393 136 27 2 
 

Solving Time. Let E denote the solving time of a given problem instance for a given value of G, 
and let EO be the minimum solving time among the CAs for the instance and the value of G. Table 3 
shows the geometric mean, geometric standard deviation and the maximum of E EO⁄  computed over 
all inconsistent instances and values of G. The geometric mean and standard deviation are used 
since the arithmetic counterparts are not suitable for normalized values [26]. These results are not 
shown for consistent instances since the differences between the CAs were negligible. It can be 
concluded that DM is usually faster and more stable than WM and LM. Hence, dom is the best 
deterministic variable selection strategy with respect to solving time. 

Table 3 Performance of the deterministic CAs with respect to solving time 

 DM WM LM 
Geom. mean 1.005 1.036 1.044 
Geom. std 1.039 1.050 1.154 
Max 2.562 3.710 11.684 
 

Fig. 2 shows the percentage of inconsistent instances solved within a given time for four selected 
CAs, namely, DM0, DR1, RR2 and DM∗. The last character corresponds to a given value of G. For 
example, the graph of DM0 shows that DM can find the first solution to more than 95% of the 
inconsistent instances in less than 0.2 seconds. Although not shown, all other similar graphs for the 
deterministic CAs stay within the graphs of DM0 and DM∗. As shown in the upper right corner of 
the figure, RR1 takes more time for some instances than DM∗, which means that randomized 
variable and value selection is not a good strategy since we can find all solutions with a 
deterministic algorithm faster. There are, however, a few problem instances to which it takes clearly 
a longer time to find all solutions as shown by the graph of DM∗. DR2 produces an acceptable 
increase in solving time, but although not shown in the figure, the solving times of DR3 become too 
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long. It can be concluded that DR should be preferred over DM for G = 0,1,2, if it increases 
BODM quality. 

 

Figure 2 Cumulative distribution of solving time for four selected CAs 

In [4], the solving time of the BILS algorithm in finding all optimal solutions to four consistent 
and inconsistent example problem instances is reported. Table 4 shows these results also for DM 
which is a little bit slower except for the inconsistent instances 3 and 4 for which DM is much 
faster. In general, the solving time of DM is acceptable considering a real application although for 
the inconsistent instance 3, the 0.5 seconds limit is somewhat exceeded. The example instances 
were formulated using the BILS formulation. With the CP formulation, the number of optimal 
solutions to the inconsistent instances 2, 3, and 4 are 44, 14091 and 155, respectively. This 
illustrates the differences between the two formulations. 

Table 4 Comparison of DM and BILS 

 Consistent Inconsistent 
Instance 1 2 3 4 1 2 3 4 
DM solving time [s] 0.13 0.14 0.27 0.2 0.14 0.18 0.66 0.26 
BILS solving time [s] 0.00 0.00 0.13 0.08 0.00 0.00 2.24 117.5 
No. sols. 1 5 2016 9 5 29 10353 78 
 

Total Squared Deviation. Fig. 3 shows the total squared deviation of the deterministic CAs for 
inconsistent instances as a histogram. The total squared deviation for each BODM is computed 
based on Eq. 13, and the results shown in the figure are obtained by summing up these deviations. 
The CAs are grouped by the parameter G, G � 0,1,2,3, and the horizontal line is the total squared 
deviation for all optimal solutions, which is the same for all CAs. The corresponding histogram for 
the consistent instances is not shown since it looks exactly the same except that the total squared 
deviations are smaller. The main result is that finding multiple optimal solutions reduces the 
deviation. In addition, DM and WM are almost equivalent and LM results always in the greatest 
deviation, which again makes DR a better choice than WR and LR. 

Table 5 shows the average total squared deviation of DR and DM for the inconsistent instances. 
It can be concluded that DR is on average better than DM. However, if we consider the 0.5 seconds 
limit, then DM is a better choice since based on Fig. 2, DM∗ can solve approximately as many 
problem instances as DR2 within this limit and the BODM quality of DM3 is already better than 
that of DR2. For shorter time limits, DR is a better choice. 

Number of Passengers. For inconsistent instances, the total number of passengers in the 
estimated BODM is typically less than in the true BODM. The reason for the underestimation is 
naturally that the inconsistent instances were created by removing passengers from the true counts. 
However, underestimation is an issue also in reality and, as shown in Table 6, the amount of 
underestimation depends on the CA. The amount of underestimation is obtained by subtracting the 
total number of passengers in the true BODM from the total number of passengers in the estimated 
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BODM for each of the 10 BODMs, and then adding up these differences. Note that also 
overestimation might be an issue in practice but, as with underestimation, this depends on the 
measuring accuracy and the used measuring device and method. 

 

Figure 3 Total squared deviation of the deterministic CAs 

Table 5 Total squared deviation of DR and DM 

G 0 1 2 3 
DR 1179.0 762.1 653.4 599.2 
DM 1255.0 843.5 676.9 616.5 
 

Table 6 shows that both randomized CAs significantly reduce the underestimation, especially 
when only one optimal solution per instance is computed. Even the worst cases (max) are better 
than the results obtained with DM. DR results on average in smaller underestimation than RR. 
Furthermore, the more optimal solutions are computed the more accurate and the more stable is the 
estimated BODM. These results support the selection of DR over DM. 

Table 6 Underestimation of the number of passengers 

 DM DR RR 
G Avg Std Min Max Avg Std Min Max 
0 175.0 16.2 6.0 10.0 30.0 22.6 8.5 14.0 33.0 
1 79.3 35.1 1.6 32.1 38.8 38.4 2.0 36.1 40.9 
2 58.7 39.1 0.6 38.0 40.9 40.9 0.9 39.8 42.1 
3 50.6 40.6 0.3 40.1 41.3 42.0 0.5 41.5 42.6 
 

CONCLUSIONS 

We presented a constraint programming (CP) formulation for the elevator trip origin-destination 
matrix (ETODM) estimation problem. An elevator trip consists of successive stops in one direction 
of travel with passengers inside the elevator, and the estimated OD matrix contains the OD 
passenger counts for the OD pairs of the trip. The ETODMs estimated for a given time interval are 
added up to construct the building OD matrix (BODM) of that interval. The passenger traffic in a 
building can be learned by combining the BODMS of the same day or time interval, and usually day 
of week. These matrices can be used to make forecasts about future passengers. The forecasts are 
needed in elevator dispatching to improve dispatching decisions with respect to future passengers. 

An ETODM estimation problem may have many optimal solutions, and any of these solutions 
may correspond to what happened in reality. To obtain robust forecasts, the learned BODMs should 
describe the possible realizations of the passenger traffic as well as possible. This can be achieved 
by finding all or several optimal solutions to each problem instance and selecting the final solution, 
e.g., randomly or as the average of the optimal solutions.  
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We compared three deterministic and two randomized CP algorithms in finding a predefined 
number of optimal solutions to the ETODM estimation problem. Several test problems were 
obtained by simulations of lunch hour traffic in a typical multi-storey office building. The traffic 
intensity was adjusted above the handling capacity of the simulated elevator group. This resulted in 
complex problem instances that enable robust performance testing and comparison of the 
algorithms. 

The comparison of the algorithms was based on solving time and BODM quality which affects 
the reliability of the passenger traffic forecasts. The results suggest that randomization and multiple 
optimal solutions is a good compromise between solving time and quality. For very complex 
problem instances, the fastest CP algorithm turned out to be even faster than the previous estimation 
approaches and algorithms. In addition, the proposed approach fulfils real time elevator group 
control requirements for solving ETODM estimation problems. 
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