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Abstract. Lateral vibrations of the suspension and compeamgabpes in a high-rise elevator
system are induced by the building motions. Whenelevator is in motion the length of the ropes
change so that the natural frequencies vary, retgléne system nonstationary. In this scenario
large displacements of the ropes occur when a gadsaough resonance takes place. Due to the
nonlinear coupling, interactions between the impland out of plane motions of the ropes occur.
Furthermore, the car, counterweight and compergatieave suffer from vertical vibrations due to
the coupling with lateral vibrations of the ropd@#is paper presents a mathematical model of a
high-rise elevator system which can be used toigréte dynamic interactions taking place during
its operation. The model is implemented in a highfgrmance computational environment and the
dynamic response of the system when the buildinguisiected to a low frequency sway, is
determined through numerical simulation with the fwdlowing the kinematic profile dictated by
the drive control algorithm. A case study is usediémonstrate resonance phenomena taking place
during the operation of the system. The resultsliptea range of nonlinear dynamic interactions
between the components of the elevator systermgltnavel and when the system is stationary.

1 INTRODUCTION

When one of the fundamental frequencies of thedmmgl structure coincides with the natural
frequencies of the ropes in the elevator instalfgtilarge resonance whirling motions of the
suspension and compensating ropes occur [1]. ®sslts in impact loads taking place in the
elevator shaft, leading to adverse dynamic behaofothe elevator system. When the elevator
system is in motion transient/nonstationary resoagsghenomena may take place. A nonstationary
linear planar model of an elevator system was ptesgein [2] which was developed further in [3]
to accommodate nonlinear modal interactions insdesy consisting of a vertical rope of varying
length moving at speed within a tall host structsubjected to a low frequency sway. The study
presented in [4] involved the prediction of intdrmasonance behavior of an elevator system
represented by a rope of time varying length tetimgy vertically with a car modeled as a spring-
mass system. In this paper a nonstationary modallo§h-rise elevator system is developed. The
system operates in a building host structure stdget a low frequency sway. This model is then
implemented in a high-performance computationatf@en to carry out numerical simulations in
order to predict the dynamic interations betweea blilding sway, the rope motions and the
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vibrations of the elevator components such as #re aompensating sheave, and counterweight.
The effects of centrifugal forces and coriolis decaion arising due to transportation motion are
accounted for.

2 DESCRIPTION OF THE MODEL OF AN ELEVATOR SYSTEM

The model of an elevator system with a car of mdgscompensating sheave of mads, and
counterweight of madsls, is depicted in Fig. 1. The suspension and congigmgsropes have mass
per unit lengthmy andm,, elastic modulud€s; and E,, and effective cross-section ate and A,
respectively. The parametby represents the distance measured from the bottodinig level to
the center of the compensating sheave. The paralmetienotes the distance measured from the
center of the traction sheave to the center ofdiverter pulley andh, represents the distance
measured from the bottom landing level to the aeotehe traction sheave. The paramdigy, is

the height of travel of the elevator car. The patarh., is the height of the car. The paramédigr

is the height of the counterweight. The paraméies the position of the elevator car measured
from the bottom landing level to the bottom of #levator car vary with time according to the
kinematic profile dictated by the drive control afghm.

The lengths of the suspension rope and of the cosgieg rope are defined as follows. The length
of the suspension rope at the car side measured thie center of the traction sheave to the the
termination at the car crosshead beam is denotdd(by The length of the compensating rope at
the car side measured from the termination at #Hrebottom to the center of the compensating
sheave is denoted &ag(t). The length of the compensating rope at the coweight side measured
from the termination at the counterweight to thatee of the compensating sheave is denoted by
Ls(t). The length of the suspension rope at the couright side measured from the center of the
diverter pulley to the termination at the countdghéend is denoted hy,(t). The mass moment of
inertia of the diverter pulley and the short sthedt the suspension rope between the pulley and the
traction sheave is neglected in the simulation rhodlbey vary with time according to the
kinematic profile dictated by the dive control aligiom.

The response of the elevator ropes subjected tamdignloading due to the building sway are
represented by the lateral in-plane and the latutlof plane displacements denotedvds;(t),t)
and W(x;(t),t) where the subscripis1,2,3,4 correspond to the rope sections of lenigthL,, Ls,
andL,, respectively. The lateral in-plane and lateral @iuplane motions of the ropes are coupled
with their longitudinal motions that are denotedUs&(t),t). The longitudinal motions of the car,
compensating sheave and counterweight are denstégkét), Ucs(t), andUcw(t), respectively.
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3  VIBRATION MODEL
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Figure 1 Elevator system

The axial Green’s strain measure representingchirej of the rope sectidns given as

IX X

£ :Uix+%(v 2+W,2). 1)

Where( )X 5# . The equations governing the undamped dynamiglatismentsU;(x(t),t),
X

Vi(xi(t),t), WE(Xi(t),t), Ucr(Xcr 1), Ucs(t), andUcw(Xcw, t) can be developed by applying Hamilton’s
principle, which yields

me + ZmVth + I'T]Vz\/xx + rnac\/lx _Tix\/ix - Ej Ajgix\/ix _Tl\/lxx - Ej A“gl\/lxx = O (2)
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MW, +2mwWY, +mvW, +maW, -T.W, —E AgW, -TW,, - E AW, =0. (3)
muU,, —~E;A&, =0. 4)
MUq +Ma, ~Mg+T,(L)+EA(g)| ~T{0)-EAfe] =0 (5)
MUcs =M g+ T, (L) +EA(g,), +T{LJ+EA e]|_ =0. (6)
MUq, +Maa, ~M,g+T,(L )+E4A4£4)‘ ~T{0)-EAfe)| =0 (7)

whereTiy represent the mean tension of each stretch of pethe acceleration of gravitg is
the acceleration of the caag, is the acceleration of the counterweighft) represent the spatial
coordinate corresponding to the sections of thesay length_;(t), La(t), La(t), andLy(t) in time t,

. 0 — . .
respectively and( )t E% and an overdot denotes the derivative with respectime, v
represents the velocity defined according to timeiatic profile of the car.

From here on the procedure described in [1] is game. The steps consist in neglecting the
longitudinal inertia of all ropes can be negleciedEq. (4) so that the model is reduced to two
equations for each section of the suspension amgppensating ropes. The Galerkin method is used
to determine an approximate solution to the noalirgartial differential equations of motion, the
boundary conditions given by Hamilton Principle[i} and the overall lateral in-plane and lateral
out of plane displacements of each rope, with tfiewing finite series:

Vi(%.t) =2 ()a, ). ®)
VVi(M)=i¢n %)z, ). 9

where @, (%) :sinEnTﬂxj; r=12,3,...N; with N denoting the number of modes, are the naatu

vibration modes of the correspondiityy rope andd, (t) and z,(t); r=1,2,...N represent the

lateral in-plane and lateral out of plane modapldisements, respectively. The final set of 4xN
ordinary differential equations for the lateral prane and lateral out of plane direction are the
following

qir (t) + ZZ qr ¢)+z K|rp ) f I\Iir qr ( ) (10)

2, (t)+2d, a, (t zr(t)+ZK.rp )z, )= F7+ N,z (). (11)
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The modal damping represented by the raths and the undamped time varying natural
frequencies of the elemeny, . The Kirp is the stiffness matrixf," and f” represent the excitation
force terms and\,, are the nonlinear terms.

Similarly, the equations of motion for the car, g@nsating sheave, and counterweight from Eq.
(5) to Eq. (7) are transformed into the modal cowmtes using the transformation

U =[Y]S (12)

where U=[Uy, Ug Uy and S=[S, Ss Sw] is a vector of modal-coordinates

corresponding to the system comprising the campsmsating sheave, and counterweight,
respectively. If[Y] is the mass-normalized mode shape matrix, thieviihg set of equations
describing the vertical response of the car, corsgigmg sheave and counterweight: in terms of the
modal parameters

S 1) + 2 et (1) S (1) + e (1) S (1) = (V) (F+7). (13)
S0t + 20 et (1) Sis (1) + s (1) Sus (1) = (V) (F+77). (14)
S (0 2 eyt (1) S (1) + € (1) S (1) = (Y9) (F +7). (15)

where {, (e, {ow and @y, Ws, @, denote the modal damping ratios and the natural

frequencies of the car, compensating sheave andteweeight, respectively, and") is theith

I:CR ”CR
mode shape vector. The =| F | is the excitation vector, and thg=| 1. | is a vector with
I:CW ,70W

components representing the nonlinear couplings thi lateral motions of the ropes.

4 CASE STUDY

A case study will be presented to illustrate theaiyic performance of an elevator system. The
system comprises sevem E7) steel wire suspension ropes and four, ¥4) steel wire
compensating ropes of mass per unit lengith 0.72E kg/m andm, =1.1 kg/m, having modulus
of elasticity E =54535 N/mn? and nominal diameterd, =13mm andd, =16mm, respectively.

The modal damping ratios for the ropes are asswamdi3% across all modes and 10% across all
the lumped modes. The height measured from thengrdloor level to the center of the traction

sheave ish, =88.875 m, the car and counterweight height hg, =h, =4.00m, travel height
h,., =80.7Cm, the car mass with full load M, =4400kg, the mass of the compensating sheave is

M, =600kg, and the mass of the counterweightMg =360Ckg. The high rise building is excited
harmonically in the lateral in-plane at a frequenegual to the natural frequency of the



180 4™ Symposium on Lift & Escalator Technologies

compensating rope when the car is passing thrcugymiddle of the travel height. In the lateral out
of plane the building is excited at a much loweamygfrency. The elevator car is positioned at the
bottom landing level and starts ascending to the lamding level with an acceleration af=a
1.1m/¢ and the counterweight goes downward with an acatide of a,=1.1m/$. Both the car
and counterweight achieve a maximum speed=8im/s. The height measured from the bottom

landing level to the center of the compensatinggdes given ad =2.02m and the height from

center of the traction sheave to the center ofdilierter pulley isb, =0.80m. The results will be

illustrated using computer animation and to denratestthe nonlinear dynamic interactions
between the components of the elevator systermgitnavel and when the system is stationary.

5 CONCLUSION

The equations of motion of a nonstationary elevaystem following the kinematic profile dictated
by the drive control algorithm comprising an el@ratar, compensating sheave, counterweight,
with suspension and compensating ropes excitedhéigh rise building motions are derived in
this paper. These equations accommodate the nanlagfects of the rope stretching in the lateral
in-plane and the lateral out of plane directionkisTmodel is used to predict the response of the
system. While the motions of the structure are krttad rope is experiencing large lateral whirling
motions. If the response of the ropes continuertavgmpact phenomena in the hoistway might
occur which may lead to excessive vibrations ofdéweand damage to the system components.

ACKNOWLEDGEMENT

Support received from ThyssenKrupp Elevator AG gnedUniversity of Northampton is gratefully
acknowledged.

6 REFERENCES

[1] R. Sanchez-Crespo, S. Kaczmarczyk, P. Picton,SH, and M. Jetter, “Modeling and
simulation of a high-rise elevator system to prediee dynamic interactions between its
components,” of3 rd Symposium on Lift and Escalator Technologies, 26 - 27" September
2013, Northampton, UK. pp. 1-10.

[2] S. Kaczmarczyk, R. Iwankiewicz, and Y. Terumjctifrhe dynamic behaviour of a non-
stationary elevator compensating rope system unalenonic and stochastic excitationg,”
Phys. Conf. Ser., vol. 181, 2009.

[3] S. Kaczmarczyk, “The nonstationary, nonlinegnamic interactions in slender continua
deployed in high-rise vertical transportation sgstein the modern built environment]”
Phys. Conf. Ser., vol. 382, 2012.

[4] R. Salamaliki-simpson and S. Kaczmarczyk, “Nonear Modal Interactions in a
Suspension Rope System with Time-Varying Lengtb]” @, 2006.



Modelling and Simulation of a Nonstationary High-Rise Elevator System to Predict the Dynamic 181
Interactions Between Its Components

BIOGRAPHICAL DETAILS

Rafael Sanchez Crespo is a full-time PhD studenihatUniversity of Northampton, UK, with a
scholarship co-funded by ThyssenKrupp Elevator &A@ thhe University of Northampton. His PhD
project concerns the effects of the dynamic respoo$tall buildings on high-rise elevator systems.
He has a Masters Degree in Structural Engineermg the Silesian University of Technology in
Gliwice, Poland and a Bachelor Degree in Civil Ewegring from the National Autonomous
University of Honduras. He has earned several schlolps and academic awards during his
studies.

Stefan Kaczmarczyk is Professor of Applied Mechsrat the University of Northampton. His
expertise is in the area of applied dynamics atdation with particular applications to vertical
transportation and material handling systems. Heble@n involved in collaborative research with a
number of national and international partners aasl én extensive track record in consulting and
research in vertical transportation and lift engneg. He has published over 90 journal and
international conference papers in this field.

Phil Picton is Professor of Intelligent Computingst&ms at the University of Northampton.

Huijuan Su is a Senior Lecturer of Engineeringhat Wniversity of Northampton.



182 4™ Symposium on Lift & Escalator Technologies



