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Abstract. An elevator represents a multi-body system deployed in buildings to provide vertical 

transportation. Vibration phenomena taking place in elevator and hoist installations may influence 

the dynamic performance of their components which in turn may affect ride quality of a lift car. 

Lateral and longitudinal vibrations of suspension ropes and compensating cables may result in an 

adverse dynamic behaviour of the entire installation.  There is a need to predict the dynamic 

behaviour of elevator systems under various operating conditions. In particular, it is necessary to 

predict any possible failures that would require their shutdowns. This paper presents the results of 

work to develop adequate mechanical models of elevator systems in a multibody simulation 

software environment. Using these models an analysis can be performed to investigate the influence 

of design parameters on their performance. Simulation tests have then been carried out and the 

results are graphically presented through diagrams and animations, for a range of elevator 

parameters. Conclusions concerning their influence on elevator performance can then be 

formulated. 

INTRODUCTION 

Dynamic simulation of multibody systems plays an important role in a wide range of fields, as in 

engineering applications, the main goal is to design and manufacture marketable products of high 

quality. Simulation analysis allows an engineer to simulate the dynamic behaviour of a product. 

Based on the results, the product design can be optimized prior to actual production. A product may 

contain mechanical, electrical, or other components. If mechanical components are allowed to move 

relative to one another, the product is called a multibody (MBD) system [1].  

A MBD system is one that consists of solid bodies, or links, that are connected to each other by 

joints that restrict their relative motion. The study of MBD is the analysis of how mechanisms and 

systems move under the influence of forces, also known as forward dynamics. A study of the 

inverse problem, i.e. what forces are necessary to make the mechanical system move in a specific 

manner is known as inverse dynamics. Motion analysis is important because product design 

frequently requires an understanding of how multiple moving parts interact with each other and 

their environment [1,2]. An elevator represents a MBD system deployed in buildings to provide 

vertical transportation. Vibrations of elevator components may influence the dynamic performance 

of their components which in turn may affect ride quality of a lift car [3]. This paper presents the 

theory and MBD simulation results using mechanical models of an elevator system in a multibody 

simulation software environment. Using these models an analysis can be performed to investigate 

the influence of design parameters on their performance.  
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CASE STUDY 

Theoretical model 

A lift car of mass P = 1000 kg is supported by a platform mounted within a sling on elastomeric 

isolation pads of combined stiffness coefficient kp = 1160 kN/m as depicted in Fig. 1. The sling 

mass is M = 400 kg and the car – sling assembly is suspended on 4 steel wire ropes in 1:1 

configuration. The ropes are of modulus of elasticity E = 0.85 × 10
5
 N/mm

2
, mass per unit length mr 

= 0.66 kg/m, metallic (effective) area Aeff = 69 mm
2
 (see Table 1). The main propose of this case 

study is to determine the natural frequencies and modal vectors of the car-sling-rope assembly when 

the lift is stationary and the length of the ropes at the car side is L = 30 m,. 

L
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Figure 1. Elevator car-sling assembly and suspension system. 

A simplified model of the system is illustrated in Fig. 2. It is evident that the model is essentially 

equivalent to a 2DOF system. The masses M1 and M2, representing the sling and the car 

respectively, are constrained by two springs of constants kp and ke and they can move vertically so 

that their position is defined by the coordinates x1 and x2, respectively. The equations of free 

undamped motion of the system given by Eq. 1 - 3 can be derived by the application of Newton’s 

2nd law [2]. 



111 

x

xM

ke

1

2 2
M

1

kp

 

Figure 2. 2DOF model of a lift car – sling – suspension system. 
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represent 2 x 2 symmetric mass and stiffness matrices, where nr is the number of suspension ropes. 

In this formulation the generalized coordinates are assembled in the displacement vector 
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T
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and the equivalent mass of the sling – suspension rope assembly is expressed as: 
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Free undamped vibration of a single degree of freedom (SDOF) system is represented by a 

harmonic motion. Using the same approach in this model it can argued that the masses Me and M2 

move according to 
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where ω is the natural frequency and X  represents a vector of modal amplitudes or shapes (the 

eigenvector). Thus, by assuming that both masses vibrate at the same frequency and are in phase but 
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have different amplitudes. Such a motion is referred to as synchronous and it is evident that the ratio 

between the two displacements remains constant throughout the motion so that 
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Inserting Eq. 6 into equation of motion Eq. 1 the following results 
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which represents two simultaneous homogenous algebraic equations in the unknowns X1 and X2 

with ω
2
 ≡ λ playing the role of a parameter (referred to as an eigenvalue). The problem of finding 

the values of the parameter λ for which the above equation has a nonzero (nontrivial) solution is 

referred to as the eigenvalue problem. It is known from linear algebra that the above equation 

possess a nontrivial solution if the determinant of the coefficient matrix is zero 
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Expanding the determinant in equation (11) yields the following characteristic equation (often 

referred to as frequency equation) for the unknown quantity λ ≡ω
2 
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This expression represents a quadratic equation in λ and yields two positive, real roots (eigenvalues) 

as follows 
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The corresponding natural frequencies are then found to be 
1,2 1,2  . Thus, there are two vectors 

of amplitudes (mode shapes or eigenvectors) corresponding to each natural frequency: 
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to be determined from the following equations 
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The mode shapes / eigenvectors can be then normalized to satisfy the following condition 
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Parameter Value Unit 

M1 400 kg 

M2 1000 kg 

mr 0.66 kg/m 

E 85000 N/mm
2
 

Aeff 69 mm
2
 

nr 4 m 

kp 1160 kN/m 

L 30 m 

Table 1 Fundamental parameters of the system 

   (1)

1

rad
20.0083 3.1844 Hz  -0.0190, -0.0291

s
   Y                (16) 

   (2)

2

rad
72.8977 10.4064 Hz  -0.0445, 0.0124

s
   Y               (17) 

The mode shapes are plotted in Figure 3. They illustrate that when the system vibrates in its first 

mode the amplitude of the second mass is greater than that of the first mass. The motions of the two 

masses are in phase. When the system vibrates in its second mode the amplitude of the first mass is 

greater and the magnitudes have opposite signs. Thus, the motions are 180
0
 out of phase. It can be 

noted that one point/ section of the second spring remains stationary at all times; such a point is 

referred to as a node. 
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Figure 3. Mode shapes. 

It is evident, that in the first mode the sling and the car move in phase. The second (higher) mode is 

mainly associated with the motion of the sling – suspension rope assembly (with the amplitude of 

the car close to zero).  

MBD simulation model and results 

Using ADAMS/Vibration tools, vibrations of the system represented by the model can be studied. 

With MBD simulations in ADAMS, physical tests on shakers can be replaced with virtual prototype 

testing. Noise and vibration are critical factors in the performance of many mechanical designs, 

with MBD simulation the forced response of a model in the frequency domain over different 

operating points, evaluate frequency response functions for magnitude and phase characteristics, 

tabulate contribution of model elements to kinetic, static, and dissipative energy distribution in 

system modes or animate forced response and individual mode response can be investigated.  
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Figure 4. Car-sling-suspension rope simulation model and modes. 

Fig. 4 illustrates the usefulness of the solution of the eigenvalue problem. This simulation can 

demonstrate how the system behaves and helps engineers to associate the natural (resonance) 

frequencies with the individual components of the system. Fig. 5 and Fig. 6 illustrate the modal 

behaviour of the car-sling-suspension assembly. The simulation test returns the same numerical 

values of the natural frequencies and the natural modes as calculated in equations (16-17) and the 

modal behaviour is illustrated through computer animation. This information is valuable to improve 

performance and control of any specific mode in order to suppress excessive vibrations in the 

system. 

 

Figure 5. The 1
st
 natural frequency and mode simulation and behaviour of the car-sling-suspension 

MBD system at 3.1844 Hz . 

 

Figure 6. The 2
nd

 natural frequency and mode simulation and behaviour of the car-sling-suspension 

MBD system at 11.6020 Hz  
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CONCLUSION 

An elevator represents a complex MBD system with its dynamic characteristics varying during the 

travel. MBD modelling and computer simulation techniques can be employed to investigate the 

dynamic behaviour of the elevator system and its components. However, the models and techniques 

should be checked through the application of benchmark problem tests and experimental validation 

so that the models can be used to make predictions with sufficient confidence.  
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