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INTRODUCTION 

Knowledge about the transfer function and the frequency behaviour for elevator systems is of 
interest for several aspects. For example, to analyse the sensitivity of the cabin to specific 
frequencies, which may causes mechanical and acoustical vibrations and thus results in discomfort. 
In addition the frequency behaviour is of high interest while applying control algorithms for active 
vibration suppression or cabin position control [1]. Due to the different suspension rope length, 
depending on the cabin’s position, the transfer function is time-varying during the travel on one 
hand. On the other hand it depends on the cabin’s payload. Existing literature concentrates on the 
frequency response analysis lower than 20 Hz [2], while this paper concentrates on methods and 
measurement signals which are precise enough to determine the frequency behaviour up to 100 Hz.  
In addition a wide range of elevator constructions exists, which differs for example in roping, 
number of rope pulleys or the location of isolation elements. For the model validation of numerous 
elevator constructions a method is needed, which may be easily applied to many elevators and 
preferably does not need additional measurement sensors.  
 
At first, this paper describes different measurement possibilities and input shapes for the 
identification process. It is analysed which input and output signal produce meaningful transfer 
functions and how they can be compared to each other. Afterwards the different identification 
methods are described, which is followed by the description how the experiments have been 
conducted at a real elevator. Finally, the frequency behaviours are discussed, which are obtained at 
a low-rise elevator for different cabin positions and payloads. 

METHODS FOR SPECTRAL ANALYSIS IN ELEVATORS 

Determining the frequency behaviour it is of specific interest to know the resonance frequencies of 
the system. While the resonance frequencies apply for the whole system, the peaks of the transfer 
function depend on the chosen input and output signals. Thus meaningful signals have to be chosen 
to ensure that all system resonances are represented in the transfer function. It is advantageous to 
use excitation and measurement signals which are already available in the system and thus 
determining the frequency behaviour may be conducted in many elevators, easily. This is especially 
important, as elevators are constructed in many different ways concerning the roping, rope pulleys 
and the position of spring elements, which results in different frequency behaviour. 

 
In state of the art elevators, often permanent magnet machines with a frequency converter 

and a position encoder with sine/cosine traces are used. Thus, the currents, voltages and traction 
sheave position/velocity are available in a high precision and in a high frequency. In this paper the 
set current i*q is used for excitation, while actual current iq,act  and actual rotational velocity ωact are 
evaluated to determine the frequency behaviour of the elevator. This dependence is shown in the 
block diagram of figure 1 and for the modelling of the mechanical system the reader may refer to 
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[1]. If other measurement signals are used, e.g. cabin or counterweight acceleration [2], additional 
sensors are needed as they are usually not installed in elevators. The data of different sensors also 
have to be accurately synchronized as otherwise the calculation yields a wrong transfer function. 
This is with less effort ensured for the current and traction sheave velocity measurements, as both 
are captured by the frequency converter. 
 

 
Figure 1: Overview cascaded control structure 

 
Several Methods for the identification of the transfer functions in the frequency or time domain 
exits [3]. In the following the frequency response analysis (FRA) with a pseudo random binary 
signal (PRBS) as excitation is described. In addition the excitation with a single discrete frequency 
and the evaluation with the orthogonal correlation method are considered. 

Transfer functions in elevators 

In literature transfer functions with different input and output signals are analysed which makes it 
difficult to compare the results. In addition, if less meaningful input and output signals are chosen, 
the peaks in the transfer function do not represent the system resonances. In [1] the transfer function 
GaC,Tmot from motor torque Tmot to car acceleration aC is used, which is, except for a constant factor, 
the same like GFC,Fmot from motor force Fmot  to car force FC [4]. In the following and in [5] the 
frequency behaviour Gω,Tmot from motor torque Tmot to traction sheave angular velocity ωact is 
regarded. Furthermore, in [2] the transfer function GvC,vT from traction sheave velocity vT to car 
velocity vC is used. 

 
In this section the similarities and differences of the transfer function are showed up, while 
analysing the poles and zeros of a simplified 3-mass model. The equations are described in [1][4] 
and yield the following differential equations which are solved via the Laplace operator 
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Here dC=DC/mC, CC=CC/mC, describes damping and spring constant of the rope on the cabin’s side. 
Indices CW represent the variable on the counterweight side. Furthermore xT and xC are the 
displacements of traction sheave and cabin. 
 
Via the relation FC=mC⋅vC⋅s, equation (2) yields the transfer function listed in equation (4) from 
traction sheave velocity vT to car velocity vC.  
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This represents the differential equation with forced velocity excitation at the traction sheave. Then 
the parameters of the counterweight’s side have no impact on the resonance frequencies. The 
behaviour is equivalent when the brake is closed and the cabin is excited. With the forced velocity 
excitation and elevators with compensation ropes the counterweight parameters influence the 
transfer function only via the compensation sheave, however not via the traction sheave.  
Equation (5) results from equation (3), if the traction sheave is excited via the motor torque. Via 
transposition of equation (5) this yields the function Gω,Tmot, which is displayed in equation (6). 
Here the static forces due to gravity are neglected and only the d’Alembert forces which influence 
the frequency behaviour are considered. 
 

 !�" = #
�$�
%&�'" − ���������������

������������

 !�"(�) −

������������
����������


 !�"(�)* (5) 

 
�+,��'"��
 = +,-.

�/0.
= ��

1��/0.
=

#
�$�
% ������������������������
������������
����������
����1�������������
����������
���1�����������
������������


*  (6) 

 
Out of this also the transfer function between motor force Fmot to car force FC is derived in the 
following equations. 
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As visible from above equations the transfer functions GFC,Fmot and Gω,Tmot are dependent also on the 
suspended masses and the elasticity of the suspension ropes at the counterweight side. Looking at 
GFC,Fmot (eq. (9)) it results, that the poles from GvC,vT (eq. (4)) are cancelled via the zeros of Gω,Tmot. 
Thus GFC,Fmot has the same denominator and poles like Gω,Tmot, however slightly different zeros. 
Therefore the resonance frequencies are the same, while antiresonance frequencies differs. In 
comparison GvC,vT has different poles and respectively resonances. With the forced velocity 
excitation the counterweight’s influence over the traction sheave to the cabin is not considered. 
Thus the function GvC,vT is only meaningful for a part of the elevator system. 

Frequency Response Analysis 

Most identification schemes are only valid for transfer functions which are time-invariant during the 
identification process [4]. This requires in elevators that the cabin stays at the same position, as 
otherwise the transfer function changes [1]. Thus identification cannot be performed during higher 
speeds and only small motions around a constant cabin position are allowed. Therefore the static 
and coulomb friction influences the transfer function [1].  
For the frequency response analysis the elevator system is excited by the torque generating set 
current i*q with a pseudo random binary signal (PRBS), which beginning is shown in figure 2. In 
this paper the sample time Ts has been chosen to 1.008 ms, which results with the Shannon theorem 
in a frequency range up to 496 Hz. Additionally a 13bit PRBS is used, which results with equation 
(10) in a measurement time for each sequence of 8.26 s. During this time the PRBS is uncorrelated, 
which is a mandatory requirement for the frequency response analysis [3]. Afterwards the PRBS is 
reiterated several times, to obtain a less noisy result. This has a frequency resolution of the transfer 
function of 0.12 Hz as displayed in equation (11). 
 

TM = (213-1)⋅1.008e-3 s = 8.26 s (10) 
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fres = 1/ Ts = 0.12 Hz (11) 
 

 
Figure 2: Pseudo Random Binary Signal 

 
The spectral densities Suy (f), Suu (f) are determined while calculating the cross/auto spectral density 
between input signal u and output signal y. Then the transfer function is given by equation (12). 
 

G(f) = Suy (f) / Suu (f) (12) 
 
For determination of the open loop transfer function from actual motor torque Tmot to actual speed 
ωact the velocity controller is set to a low bandwidth to avoid influence from the feedback. In 
equation (12) the input signal u is represented by the actual current iq,act, while the output y is ωact. 
With this procedure the non-parametric transfer function G(s)=ωact(s)/Tmot(s) is obtained, where 
motor torque is given for permanent magnet machines by Tmot = c  · i_qact. The transfer function in 
equation (12) has complex numbers, thus a common way to illustrate the frequency behaviour is via 
bode plots, which display the absolute value and phase. 
 
For evaluation of the calculated transfer functions the coherence is chosen as assessment criterion 
and given in equation (13). 
 

γ2 = |Suy (f)|
2 / (Suu (f) ⋅ Syy (f)) (13) 

 
If the system has strongly linear dependence, then the coherence equals one. Otherwise it is less 
than one, which occurs also at the location of resonance frequencies [4].  

Orthogonal Correlation Method 

The orthogonal correlation procedure may be used to determine the frequency behaviour and 
excites the system with single frequencies via a sine function [3][6]. In figure 3 the scheme of the 
method is displayed with the amplitude of the set current û which excites the single frequency f0. 
The system is excited using a sine signal during the measurement time Tm. With this estimation 
method the real and imaginary parts are obtained for the transfer functions  
 

G1(s) = ωact(s) / i
*
q(s) (14)  

G2(s) = iq,act(s)/ i*q(s)  with  s=j2πf0 . (15) 
 
Out of these the complex transfer function between actual current to actual speed is given by G(s)= 
G1(s)/ G2(s) and the gain |G| may be calculated via |G1(s)/ G2(s)|. This is reiterated for several 
discrete frequencies and the data is added to the resulting bode plots of previous section. Also here, 
the velocity controller is set to a low bandwidth as described in the previous section. 
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Advantageous of the orthogonal correlation method is the concentration of the total energy of the 
excitation signal to one frequency. This yields more accurate results, especially if non-linearities 
like friction or quantization inaccuracies are present. In contrast the energy of the PRBS is 
distributed over the whole frequency range and thus each single frequency is less excited. 
 

 
Figure 3: Scheme of orthogonal correlation 

EXPERIMENTAL SETUP 

To apply the tests to many elevator constructions, the experimental setup should be easily installed. 
In figure 4 the general setup is shown, where the elevator controller is unplugged and instead a 
dSPACE box is plugged to the CAN-buses. The box controls the frequency converter via the first 
CAN-bus for slow signals - e.g. initiating, open brakes, cabin position, load sensor signal or set 
speed. It also provides via the second CAN-bus the fast signals, like the set current excitation and 
also the captured sensor data from the frequency converter is exchanged. The captured data is 
offline processed and then the transfer function is calculated. 
 

 
Figure 4: Experimental setup 

 
The basic safety is ensured via the safety chain, which is coupled to the frequency converter. It 
would stop the drive, if e.g. the elevator would move to the end switches of the shaft. 
 
The test elevator used in this paper has a travel height of 10.6 m, a 2:1 roping and a maximum 
payload of 450 kg. Further parameters are listed in table A.1.  
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EXPERIMENTAL RESULTS 

The experiments have been performed for different cabin positions and loads. In figure 5 the results 
are shown for different cabin positions, while the payload is held constant at mL=180 kg. The 
distance in meters has its origin in the bottom floor, referring to H=0 m. Therefore, the distance 
9.6 m is shortly below the top floor, which is located at H=10.6 m. The first resonance frequency at 
5 Hz stays constant for this elevator. The second resonance is also distinctive and increases with 
lower cabin position. The reason is found in the short suspension ropes between counterweight and 
traction sheave when the cabin is in bottom position. This results in a very stiff coupling between 
counterweight and traction sheave. This coupling is stiffer than the coupling when the cabin is in 
top position as the cabin is additionally isolated via the cabin springs. This behaviour is also 
confirmed by the theory of a simplified three mass model, while looking at the poles of the transfer 
function (eq. 6). If typical parameters are inserted it results in a higher second resonance frequency 
when the cabin is in bottom position and the counterweight is not isolated with additional springs 
applying to this test elevator. 
 
Further resonances occur above 30 Hz and vary strongly with the cabin’s position. Mainly the anti-
resonances or the zeros of the transfer function change the location, which thus may eliminate or 
reduce the peak of a resonance. Especially, this is visible for the cabin in top position and the first 
resonance. 

 
Figure 5: Bode plot for different positions: |G(s)| = | ωact(s)/Tmot(s)|; s=j2πf 

 
Looking at the frequency range up to 10 Hz the transfer function of the elevator with cabin in top 
position is much noisier than in bottom position. Here, the reason is a higher friction of the cabin in 
top position, which is also visible in the coherence shown in figure 6 (b). It drops significantly in 
this range, indicating the non-linear relationship. The strongest friction is caused between guide 
rails and cabin as well as between the guide rails and counterweight. For this low-rise elevator this 
influence is stronger as guide shoes are used and would be smaller, if roller guides are installed. 
Additionally, friction occurs at the traction sheave shaft and also for the rope pulleys at the 
counterweight and cabin.  
 
The main reasons for the influence of the friction are the identification schemes, which are valid for 
transfer functions which are time-invariant during the identification process [3]. Time-invariance in 
the elevator system requires that the cabin stays at the same position, as otherwise the rope length 
changes and thus the transfer function (see figure 5). Therefore the identification cannot perform 
during higher speeds and only small motions around a constant cabin position are allowed, which 
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thus causes in static and sliding friction. During the travel, for non-zero speeds, the friction causes a 
constant force in opposite of the direction of travel, which results only in a different value for the 
constant frequency content at zero Hertz, however not for the other frequencies. Therefore the static 
and sliding friction influence the identification process. 
 

  
(a) mL = 180 kg, H = 0 m     (b) mL = 180 kg, H = 9.6 m 

Figure 6: Transfer functions G(s) = ωact(s)/Tmot(s); s=j2πf 
 

In figure 6 and figure 7 (a) also the results of the orthogonal correlation are marked with the grey 
crosses. In general the crosses fit very well on the transfer function estimated by the FRA. Small 
differences occur in figure 6 (b) at 20Hz, where the peak is directly located at a resonance and is the 
reason for the deviation. As expected, it is also visible, that the small deviations occur when the 
coherence drops.  
 
While looking at the phase, it shows the same relationships like the gain and the effect of 
resonances is apparent. Especially, this is visible in figure 7 (b), when the payload is removed and 
thus the first antiresonance occurs at a higher frequency. This results almost in an elimination of the 
first resonance, which is visible at the gain. However, the phase indicates even more clearly this 
elimination and only a small rise and drop in phase occurs between 4 and 5 Hz. 
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(a) mL = 180 kg, XK = 5.3 m     (b) mL = 0 kg, XK = 5.3 m 

Figure 7: Transfer functions G(s) = ωact(s)/Tmot(s); s=j2πf 
 

SUMMARY 

This paper describes two methods to obtain the frequency behaviour for the vertical motion of 
elevators. The sensor signals are chosen by means of availability in standard elevators and yield 
accurate results up to 100 Hz. The methods are applied at a test elevator and the frequency 
behaviour is obtained for several cabin positions and payloads. Both methods give meaningful and 
also very similar results. 
 
Now, the results can be used to reduce vibrations while optimizing mechanical parameters like 
spring stiffness or rope pulley inertia. The results may be also used to validate simulation models 
and thus enable the optimization of elevators already in simulation.  
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APPENDIX 

 

mc [kg] 585  Cabin mass 
mL [kg] 450 Maximum payload 
mcw [kg] 765 Counterweight mass 
H [m] 10.6 Travel height 
Jds [kg m²] 0.18 Motor + traction sheave inertia 
rds [m] 0.22 Radius traction sheave 
c [Nm/A] 22.7 Motor constant 
U 2:1 Roping 
N 6 Number of ropes 
Drope [mm] 6 Rope diameter 

Table A.1: Parameters of test elevator 
 


