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ABSTRACT 

Monte Carlo simulation is a powerful tool used in calculating the value of a variable that is 
dependent on a number of random input variables.  For this reason, it can be successfully used when 
calculating the round trip time of an elevator, where some of the inputs are random and follow pre-
set probability distribution functions.  The most obvious random inputs are the number of 
passengers boarding the car in one round trip, their origins (in the case of multiple entrances) and 
their destinations. 

Monte Carlo simulation has been used to evaluate the elevator round trip time under up-peak 
traffic conditions.  Its main advantage over analytical formula based methods is that it can deal with 
all special conditions in a building without the need for evaluating new special formulae.  A 
combination of all of the following special conditions can be dealt with:  Unequal floor population, 
unequal floor heights, multiple entrances and top speed not attained in one floor jump.  Moreover, 
this can be done without loss of accuracy, by setting the number of runs to the appropriate value. 
 This paper extends the previous work on Monte Carlo simulation in relation to two aspects:  
the passenger arrival process model and the passenger average travelling time. 

The software is developed using MATLAB.  The results for the average travelling time are 
compared to analytical formulae (such as that by So. et al., 2002).  The results showing the effect of 
the Poisson arrival process on the value of the elevator round trip time are also analysed. 

The advantage of the method over analytical methods is again demonstrated by showing 
how it can deal with the combination of all the special conditions without the loss of accuracy (five 
conditions if the passenger arrival model is added as Poisson). 
 The issues of convergence, accuracy and running time are discussed in relation to the 
practicality of the method. 
 
Keywords:  Monte Carlo simulation, elevator, lift, round trip time, interval, up peak traffic, average 
waiting time, average travelling time, multiple entrances, highest reversal floor, probable number of 
stops. 
 
Nomenclature 
a is the top acceleration in m/s2 
AR% is the passenger arrivals expressed as a percentage of the building population in the busiest 

five minutes 
att is the average travelling time in s 
awt is the average waiting time in s 
CC is the car carrying capacity in persons 
df is the height of one floor in m 

( )id f  is the floor height for floor i 
df eff is the effective floor height used in the case of unequal floor heights in m 
E(dtotal) is the expected value of the distance travelled in the up direction in m 
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dG is the height of the ground in m where more than the typical floor height 
( )fdE

 is the expected value of the floor heights (effective floor height) 
H is the highest reversal floor (where floors are numbered 0, 1, 2….N 
HC% is the handling capacity expressed as a percentage of the building population in five minutes 
int is the interval at the main terminal in s 
j is the top rated speed in m/s3 
L is the number of the elevators in the group 
N is the number of floors above the main terminal 
P is the number of passengers boarding the car from the main terminal (does not need to be an 

integer) 
S is the probable number of stops 
τ  is the round trip time in s 
tao is the door advance opening time in s (where the door starts opening before the car comes to a 

complete standstill) 
tdc is the door closing time in s 
tdo is the door opening time in s 
tf is the time taken to complete a one floor journey in s 
tpi is the passenger boarding time in s 
tpo is the passenger alighting time in s 
tpB is the component of the travelling time that the passenger spends boarding and alighting from the 

elevator car in s 
tpW is the component of the travelling time that the passenger spends waiting for other passengers to 

board and alight from the elevator car in s 
tpH is the component of the travelling time that the passenger spends travelling in the up direction at 

rated speed in s 
tpS is the component of the travelling time that the passenger spends stopping when travelling in the 

up direction in s (accelerating, decelerating times, door opening and closing times) 
ts is the time delay caused by a stop in s 
tsd is the motor start delay in s 
tv is the time required to traverse one floor when travelling at rated speed in s 
U is the total building population 
Ui is the building population on the ith floor 
v is the top rated speed in m/s 

1. INTRODUCTION 

Monte Carlo simulation is a powerful method that can be used to evaluate the output value for 
problems that have a number of random inputs, whereby the probability density functions of the 
input random variables are known.  By generating instances of the random input variable in the 
form of scenarios, and running a large number of scenarios, the expected value of the output of 
interest can be found by taking the average value of all the scenarios.  Scenarios in this paper will 
be referred to as trials. 
 Monte Carlo simulation has been effectively used to evaluate the round trip time under up 
peak traffic conditions [1], in finding an optimum parking policy [2] as well as generating 
passengers for the purposes of simulating [3].  It offers an advantage over conventional equation 
based methods where special conditions exists, such as unequal floor heights, unequal floor 
populations, top speed not attained in one journey and multiple entrances. 
 This paper extends the application of the method to the calculation of the passenger average 
travelling time.  In order to verify the results of the method, an equation is developed to calculate 
the average travelling time under up peak traffic conditions assuming top speed is attained in one 
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floor journey, single entrance and equal floor heights.  The Monte Carlo simulation results for the 
average travelling time are then compared to the equation developed in [4].  The equation is then 
extended in order to cover the case of unequal floor heights. 
 
Analytical methods for elevator traffic analysis have been extensively covered in [5], [6], [7] and 
[8].  The Poisson passenger arrival model has been extensively covered in [9], [10], [11] and [12].  
The case of the top speed not attained in one floor journey is addressed in [13].  The case of 
multiple entrances has been addressed in [14].  Discrete time-slice Simulation based methods have 
been developed in [15]. 
 
In order to ensure consistency and clarity of the interpretation of the results, the following 
definitions will be used throughout this paper for the average waiting time (awt) and the average 
travelling time (att): 
 

awt:  The average waiting time will be defined as the period from passenger arrival in the 
lobby until the passenger starts to board the car.  Thus, based on this definition, the average 
waiting time does not include the passenger boarding time. 
 
att:  The average travelling time will be defined as the period from the time the passenger 
starts to board the car until the passenger has left the car at the destination floor.  Thus, 
based on this definition, the average travelling time does include the passenger boarding 
time.  It also includes the passenger alighting time at the destination. 

 
The equation for the average travelling time is derived in section 2.  Verification of this equation 
using the Monte Carlo simulation method is carried out in section 3.  The equation is then further 
adjusted for the case of unequal floor heights in section 4.  The effect of the Poisson passenger 
arrival model is analysed in section 5.  A practical elevator system design example is given in 
section 6.  A number of notes on convergence are presented in section 7.  Conclusions and further 
work is presented in sections 8 and 9 respectively. 

2. DERVATION OF THE EQUATION FOR THE AVERAGE TRAVELLIN G TIME 

An equation for the average travelling time has been developed in [4].  The equation is derived in 
the section using a different approach and in accordance with definition presented earlier. 
 The approach that will be followed in deriving the average travelling time is to find the 
expression for each component of the minimum possible time and maximum possible time and the 
use the average of both. 

The average travelling time includes four components: 
 

• The boarding and alighting time for the passenger himself/herself. 
• The time the passenger spends waiting for other passengers to board and alight. 
• The time the passenger spends during the elevator stoppage time (where stoppage time 

includes acceleration and deceleration time as well as door opening and closing times). 
• The time that the passenger spends in the elevator car travelling at top speed. 

 
The first component, which is the boarding and alighting time of the passenger, is easy to evaluate: 
 

 popipB ttt +=  (1) 
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In order to calculate the second component, it is assumed that on average the passenger will have 
the remaining 1−P  passengers ahead of him/her and the other half behind him/her.  Thus he/she 

will have to wait for 
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As for the time spent during elevator stops, it is worth noting that all passengers will at least have to 
wait for the first stop (rational passenger boarding at the ground cannot alight at the ground and 
must at least wait for the first stop).  Thus all passengers as a minimum must wait for st  caused 

by the first stop.  As a maximum, a passenger might have to wait for all the S stops above, stS ⋅ .  

None of the passengers will wait the last stop (door closing at the highest floor, acceleration and 
deceleration during the express back journey and doors opening at the main entrance) and hence the 
wait is for S stops rather than S+1 stops.  Taking the average of both values above, gives the 
average time each passenger waits during elevator stops travelling in the up direction: 
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On average each stop will traverse a distance of 
S

H
 floors.  All passengers will have to wait for that 

distance to be traversed at stop speed at least, as any rational passenger cannot board at the main 
terminal and leave at the main terminal.  As a maximum, some passengers will have to wait for the 

whole H floors to be traversed.  The minimum time will be 
S

H
tv ⋅ , while the maximum time will be 

S
S

H
tv ⋅ .  Taking the average of both times give an expression for the time spent during travelling at 

top speed in the up direction. 
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Adding all the four terms provides an expression for the average travelling time: 
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Rearranging and assuming that ppopi ttt == , gives the important final result for the average 

travelling time: 
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A similar expression for the average travelling time has been derived by So () using a different 
method and is shown below: 
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It is worth noting that the expression in equation (6) differs from the one in equation (7) in that it 
includes an extra tp where this accounts for the fact that this definition of waiting time includes 
passenger boarding time, while equation (7) excluded passenger boarding time. 
 
It is also worth noting that equations (6) and (7) implicitly make the following assumptions: 
 

1. Top speed is attained on one floor journey. 
2. Incoming up peak traffic only. 
3. Equal floor heights. 
4. Single entrance. 

 
The equation of the round trip time depends on the values of S (probable number of stops), H (the 
highest reversal floor) and P (the number of passengers in the car) as shown in equation (16). 
 

 ( ) ( )popisv ttPtStH +⋅+⋅++⋅⋅= 12τ
 (8) 

 
The highest reversal floor is a function of the number of passengers: 
 
 )(PfH =

 
(9) 

 
The probable number of stops is also a function of the number of passengers: 
 
 )(PfS =

 
(10) 

 
The number of passengers in the elevator car is equal to the product of the passenger arrival rate and 
the actual interval: 
 
 actintP ⋅= λ  (11) 
 
But the interval is in fact a function of the round trip time as shown in equation (20) below: 
 

 
L
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Combining equations (19) and (20) gives the following result that shows that the number of 
passengers is a function of the round trip: 
 

 
L

P
τλ ⋅=  (13) 

 
As can be concluded from the two equations ((8) and (13)) the round trip time is a function of the 
number of passengers, but the number of passengers is a function of the round trip time.  Thus the 
equation for the round trip time shown in (8) is an implicit equation of the round trip time that can 
be only solved by the use of an iterative approach (or other mathematical methods such as 
conformal mapping [11]).  This has been addressed as part of a comprehensive design methodology 
[17]. 
 When amending the equations for H and S to address the Poisson passenger arrival model, 
the term that represents the probability of a passenger not travelling to the ith floor can be amended 
as shown below. 

The probability of a passenger will not travel to floor i assuming equal floor populations for 
constant and Poisson arrival modes is shown below (using equation (11)): 
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The probability that all the passengers will not go to a floor i is (assuming equal floor populations) 
for both constant and Poisson arrival models is shown below: 
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And this can be further developed for the case of unequal floor populations as shown below: 
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The probability of all passengers not going to a floor i is equivalent to the probability of the elevator 
not stopping at floor i.  These expressions are used in deriving the values of H and S as shown in 
equations (20) to (27). 

The equation for calculating the average travelling time (8) can cope with a number of 
special conditions such as unequal floor heights and Poisson arrival model by using the calculated 
for the probable number of stops and the highest reversal floor in accordance with equations (20) to 
(27). 
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3. VERIFICATION 

The derivation of the equation for the average travelling time has been necessary in order to verify 
the use of the Monte Carlo simulation.  A repeat of the calculations carried out in [4] has been 
carried out with the results shown in Table 1.  The results show excellent agreement with the 
calculation results. 
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Table 1:  Verification results for the average travelling time comparing calculation and Monte Carlo simulation. 

N P 
Analytical Equation, 
assuming constant 
arrival process (7) 

Monte Carlo 
Simulation (assuming 

constant arrival 
process) 

10 6.4 48.19 48.18 
10 16.8 74.46 74.40 
13 6.4 53.65 53.67 
13 16.8 84.00 84.00 
16 10.4 73.27 73.27 
16 20.8 101.97 101.97 
20 10.4 80.70 80.72 
20 20.8 112.85 112.85 
23 12.8 94.74 94.65 
23 26.4 135.00 135.03 

 
However, the strength of the Monte Carlo simulation method becomes clear when the special 
conditions exist (such as top speed not attained or multiple entrances), where the calculation method 
fails to deal with.  This will be illustrated later in this paper. 

4. CASE OF UNEQUAL FLOOR HEIGHTS 

In the case where the floor heights are unequal, this will have an effect on the calculation of the 
round trip time equation.  The equation for the round trip time or average travelling time can be 
amended as follows in order to account for this case as follows. 
 The effect of the unequal floor heights can be taken into consideration by assuming an 
effective floor height df eff that can be inserted into the original round trip time equation. 
The effective floor height df eff is the expected value fo the floor height.  The effective floor height is 
the weighted average of all the floor heights multiplied by the probability of the elevator passing 
through that floor.  In order for the elevator to pass through a floor it should travel to any of the 
floors above that floor.  Thus it is necessary to find the probability of the elevator travelling above a 
certain floor, i. 
 The probability of the elevator not stopping at a certain floor, assuming equal floor 
populations is the probability that passenger j will stop at a floor i (assuming equal floor populations 
and a constant passenger arrival model): 
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Thus the probability that passenger j will not stop at a floor i is: 
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But the car contains P passengers.  So the probability that none of them will stop at floor i is the 
product of all of their respective probabilities: 
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The probability that the lift will not travel any higher than a floor i is the probability that it will not 
stop on floor i+1 or i+2 or i+3 all the way to floor N.  This is expressed as the product of these 
individual conditional probabilities: 
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This can be re-written as: 
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Putting all terms inside the same bracket gives: 
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This simplifies to: 
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Thus the probability that the lift will travel above the floor i is: 
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Thus the expected value of the travel distance can be calculated as the weighted average of the 
various floor heights as follows: 
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(35) 

 
The last term above reduces to zero (as it is impossible for the elevator to pass through floor N).  
The expected floor height is obtained by dividing the expected total travel distance by the highest 
reversal floor, H.  So the equation for the effective floor height can be expressed as shown below 
(assuming equal floor populations and a constant passenger arrival model): 
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(36) 

 
The same procedure can be used to develop the equation for the case of unequal populations and 
Poisson passenger arrival model. 
 
Taking an example to illustrate the difference in the effective floor height, a building with 20 floors 
above ground is analysed.  The floor heights are shown below in Table 2.  It will be assumed that 
the floor populations are equal and that the passenger arrival process is constant (rather than 
Poisson).  It will be also assumed that the number of passenger, P, is 13. 
 
Table 2:  The floor heights for a building with 20 floors above ground. 

Floor # i df(i) (m) 
L20 21 3.2 
L19 20 3.2 
L18 19 3.2 
L17 18 4.2 
L16 17 4.2 
L15 16 4.2 
L14 15 4.2 
L13 14 4.2 
L12 13 4.2 
L11 12 4.2 
L10 11 4.2 
L9 10 4.2 
L8 9 4.2 
L7 8 4.2 
L6 7 4.2 
L5 6 4.2 
L4 5 4.2 
L3 4 6 
L2 3 6 
L1 2 6 
G 1 8 

 
Applying equation (24) to evaluate the highest reversal floor gives a value for H of:  18.95 
(assuming floors numbers run from 1 to 21).  Then applying equation (36) to evaluate the effective 
floor height gives a value of 4.62 m.  This can be compared to the average floor height of all floors, 
which is 4.50 m.  A difference of 0.12 m exists per floor. 
 The average passenger travelling time can be calculated in order to assess the effect of 
unequal floor heights, using equation (7).  Using the parameters shown below, whereby the rated 
speed is attained in one floor journey, and there is only a single entrance and a constant passenger 
arrival model is assumed. 
 
tdo = 2 s 
tdc = 3 s 
tsd = 0.5 s 
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tao = 0 s 
tpi = 1.2 s 
tpo = 1.2 s 
v = 1.6 m/s 
a = 1.0 m/s2 
j = 1.0 m/s3 
 
The calculation and Monte Carlo simulation results for both round trip time and the average 
travelling time are shown in Table 3 below. 
 
Table 3:  Calculation and Monte Carlo simulation results for the round trip time and the average travelling time 
(all results in seconds). 

Floor height used 
Round trip time Average travelling time 

Calculation 
Monte Carlo 
simulation 

Calculation 
Monte Carlo 
simulation 

Average of all 
floor heights (4.5 
m) 

225.11 225.10 89.76 s 89.83 

Effective floor 
height 4.62 m 
using equation () 

227.96 227.96 90.55 s 90.55 

 
Using the effective floor height results in a difference of around 3 seconds for the round trip time 
and a difference of around 1 second for the average travelling time.  Moreover, the Monte Carlo 
simulator is giving identical results to the calculation method of the amended equation. 

5. THE EFFECT OF THE POISSON PASSENGER ARRIVAL MODEL 

Further investigation is carried out in this section of the effect of the passenger arrival model on the 
round trip time and the average travelling time.  Table 4 shows the average travelling time and the 
round trip time for a number of buildings using for both the constant passenger arrival model and 
the Poisson arrival model.  It can be seen that the assumption of a Poisson arrival model results in a 
small reduction of the values of the round trip time and the average travelling time. 
 
Table 4:  Round trip time and average travelling time for the two passenger arrival models. 

N P Analytical 
Equation, 
assuming 

constant arrival 
process 

(equation (7)) 

Monte Carlo Simulation 
(assuming constant arrival 

process) 

Monte Carlo Simulation 
(assuming Poisson arrival 

process) 

  att att τ att τ 
10 6.4 48.19 48.18 114.26 47.37 111.72 
10 16.8 74.46 74.40 170.82 73.90 169.49 
13 6.4 53.65 53.67 131.27 53.08 128.83 
13 16.8 84.00 84.00 197.40 83.36 195.75 
16 10.4 73.27 73.27 180.98 72.60 178.80 
16 20.8 101.97 101.97 241.80 101.25 240.21 

 
In general, as the number of passengers changes, the Poisson arrival model results in a smaller value 
of the round trip time and the average travelling time, as shown in Figure 1 and Figure 2 
respectively. 
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Figure 1:  Round Trip Time for a 16 floor building for both constant and Poison arrival passenger models. 
 

 
Figure 2:  Average travelling time for a16 floor building under constant and Poisson passenger arrival models. 
 

6. PRACTICAL EXAMPLE 

In order to illustrate the use of the Monte Carlo Simulation method in the elevator traffic design, the 
following practical example is presented.  The example is shown in order to illustrate the use of the 
method for the combination of all of the following special cases: 
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a. Constant passenger arrival model. 
b. Unequal floor populations. 
c. Unequal floor heights. 
d. Top speed not attained in one floor journey. 
e. Multiple entrances. 

 
An office building has an arrival rate (AR%) of 12%.  It is desired to design the elevator system 
such that a target interval of 30 seconds is achieved.  The automated design method developed in 
[17] is used for the design and the Monte Carlo simulation is used to calculate the round trip time as 
shown in [1]. 
 
The following parameters are used: 
 
tdo = 2 s 
tdc = 3 s 
tsd = 0.5 s 
tao = 0 s 
tpi = 1.2 s 
tpo = 1.2 s 
v = 4.0 m/s (top speed will not be attained in one floor journey [16]) 
a = 1.0 m/s2 
j = 1.0 m/s3 
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Table 5:  The floor heights, populations and arrival rates for a building with 20 floors above ground. 
Floor # df(i) (m) Entrance 

arrival 
percentage 

Population 

L20 4 - 30 
L19 4 - 38 
L18 4 - 38 
L17 4 - 38 
L16 4 - 38 
L15 4 - 38 
L14 4 - 38 
L13 4 - 38 
L12 4 - 38 
L11 4 - 38 
L10 4 - 38 
L9 4 - 38 
L8 4 - 38 
L7 4 - 38 
L6 4 - 38 
L5 4 - 38 
L4 4 - 100 
L3 6 - 100 
L2 6 - 100 
L1 6 - 100 
G 8 70% - 
B1 3.2 10% - 
B2 3.2 10% - 
B3 3.2 10% - 

 
The resultant design is shown below: 
 

• Constant passenger arrival model 
• Round trip time: 177.72 s 
• Average travelling time:  71.73 s 
• Number of elevators: 7 
• Target interval:  30 s 
• Actual Interval:  25.39 s 
• Actual passenger P:  10.15 passengers 
• Car capacity:  13 passengers 1000 kg 
• Car loading:  78% 

 

7. NOTES ON CONVERGENCE OF THE MONTE CARLO SIMULATOR 

In this section, some analysis is carried out on the convergence of the final result from the Monte 
Carlo simulator as used to calculate the round trip time and the passenger average travelling time. 
 In order to achieve better accuracy, the number of trials can be selected.  The round trip time 
results for a sample building are shown in Table 6.  For each number of trials, the analysis is carried 
out 10 times. 
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Table 6:  Effect of the number of trials on the calculation of the round trip time using the Monte Carlo 
Simulator. 

 
Number of Trials 

10 100 1000 10000 100000 1000000 

Readings 
for the 

round trip 
time (s) 

150 154.7813 153.8286 154.1935 154.1368 154.1514 
153.87 153.8205 154.3263 154.1499 154.205 154.1547 
152.745 152.9183 153.6842 153.8559 154.1622 154.1546 
155.7375 152.6933 153.7789 153.9662 154.1579 154.1587 
154.6125 153.4088 154.1551 154.0913 154.1548 154.1553 

156.3 155.4473 153.8216 154.2747 154.1166 154.1585 
156.5475 154.0455 154.0831 154.1364 154.1485 154.1510 
162.2175 153.3323 154.5007 154.1614 154.2053 154.1533 
156.5475 153.708 154.4249 154.1944 154.1861 154.1614 
147.75 155.049 154.2289 154.1461 154.1513 154.1557 

 
The results of all the Monte Carlo Simulations are plotted as a scatter diagram in Figure 3 in order 
to visually convey the relationship between the accuracy of the method against the number of trials.  
The effect on accuracy of the final answer against the number of trials is plotted in Figure 4.  Based 
on the results in the figure, 100 000 trials are required for accuracies better than ±0.1%. 
 

 
Figure 3:  Convergence of the value of the round trip as the number of trials is increased. 
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Figure 4:  Deviation percentage of the RTT from the mean against the number of trials. 
 
For the example above, an analysis is shown of the running time for the increased number of trials 
and the resultant accuracy, as shown in below.  This provides a guide to the designer in terms of 
trading off accuracy with running time. 
 It is worth noting that these running times are based on the running of MATLAB code.  Use of 
other tools, such as C++ for example, would provide much faster software, significantly reducing 
the running time. 
 
Table 7: Accuracy of the results for different number of trials and the required running time for the Monte 
Carlo Simulation for the example used. 
Number of iterations Percentage deviation from 

the mean 
Running time (s) (for the 
example of 10 floors above 
ground, 13 passengers) 

10 ±4.678% <1 
100 ±0.895% <1 
1000 ±0.265% <1 
10000 ±0.136% <1 
100000 ±0.029% 7 
1000000 ±0.003% 70 

8. CONCLUSIONS 

Monte Carlo simulation has been used to calculate the average passenger travelling time in an 
elevator system under up peak traffic conditions.  The results of the Monte Carlo simulation have 
been verified for the simplest cases using an analytical formula for the average travelling time that 
has been derived.  This verification showed good agreement. 
 The analytical equation was further developed to deal with the case of unequal floor heights, 
and further verification was carried out with good agreement.  The analytical equations for the 
average travelling time can be applied to the cases of unequal floor populations and Poisson 
passenger arrival model. 
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 The strength of the Monte Carlo simulation comes to the fore when the combination of all 
the five special conditions exists in a building:  unequal floor heights; unequal floor populations; 
multiple entrances; Poisson arrival model and top speed not attained.  A practical design example is 
given to show how the method can be used to calculate the round trip time and the average 
travelling time. 
 Commentary is given on the rate of convergence of the method, and the effect of the number 
of trials on the accuracy of the result.  A guide is provided to the designer as to the trade-off 
between the number of trials, accuracy of the method and the running time. 
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